blob: 9a3aff1ee26fecf59baaaf3c4608c4357477d98f [file] [log] [blame]
#include "y2014/control_loops/drivetrain/drivetrain.h"
#include <stdio.h>
#include <sched.h>
#include <cmath>
#include <memory>
#include "Eigen/Dense"
#include "aos/common/logging/logging.h"
#include "aos/common/controls/polytope.h"
#include "aos/common/commonmath.h"
#include "aos/common/logging/queue_logging.h"
#include "aos/common/logging/matrix_logging.h"
#include "y2014/constants.h"
#include "frc971/control_loops/state_feedback_loop.h"
#include "frc971/control_loops/coerce_goal.h"
#include "y2014/control_loops/drivetrain/drivetrain.q.h"
#include "y2014/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
#include "y2014/control_loops/drivetrain/polydrivetrain.h"
#include "frc971/queues/gyro.q.h"
#include "frc971/shifter_hall_effect.h"
// A consistent way to mark code that goes away without shifters. It's still
// here because we will have shifters again in the future.
#define HAVE_SHIFTERS 1
using frc971::sensors::gyro_reading;
namespace frc971 {
namespace control_loops {
using ::y2014::control_loops::drivetrain::kDt;
class DrivetrainMotorsSS {
public:
class LimitedDrivetrainLoop : public StateFeedbackLoop<4, 2, 2> {
public:
LimitedDrivetrainLoop(StateFeedbackLoop<4, 2, 2> &&loop)
: StateFeedbackLoop<4, 2, 2>(::std::move(loop)),
U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0,
-1, 0,
0, 1,
0, -1).finished(),
(Eigen::Matrix<double, 4, 1>() << 12.0, 12.0,
12.0, 12.0).finished()) {
::aos::controls::HPolytope<0>::Init();
T << 1, -1, 1, 1;
T_inverse = T.inverse();
}
bool output_was_capped() const {
return output_was_capped_;
}
private:
virtual void CapU() {
const Eigen::Matrix<double, 4, 1> error = R() - X_hat();
if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) {
mutable_U() =
U() * 12.0 / ::std::max(::std::abs(U(0, 0)), ::std::abs(U(1, 0)));
LOG_MATRIX(DEBUG, "U is now", U());
// TODO(Austin): Figure out why the polytope stuff wasn't working and
// remove this hack.
output_was_capped_ = true;
return;
LOG_MATRIX(DEBUG, "U at start", U());
LOG_MATRIX(DEBUG, "R at start", R());
LOG_MATRIX(DEBUG, "Xhat at start", X_hat());
Eigen::Matrix<double, 2, 2> position_K;
position_K << K(0, 0), K(0, 2),
K(1, 0), K(1, 2);
Eigen::Matrix<double, 2, 2> velocity_K;
velocity_K << K(0, 1), K(0, 3),
K(1, 1), K(1, 3);
Eigen::Matrix<double, 2, 1> position_error;
position_error << error(0, 0), error(2, 0);
const auto drive_error = T_inverse * position_error;
Eigen::Matrix<double, 2, 1> velocity_error;
velocity_error << error(1, 0), error(3, 0);
LOG_MATRIX(DEBUG, "error", error);
const auto &poly = U_Poly_;
const Eigen::Matrix<double, 4, 2> pos_poly_H =
poly.H() * position_K * T;
const Eigen::Matrix<double, 4, 1> pos_poly_k =
poly.k() - poly.H() * velocity_K * velocity_error;
const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k);
Eigen::Matrix<double, 2, 1> adjusted_pos_error;
{
const auto &P = drive_error;
Eigen::Matrix<double, 1, 2> L45;
L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0));
const double w45 = 0;
Eigen::Matrix<double, 1, 2> LH;
if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) {
LH << 0, 1;
} else {
LH << 1, 0;
}
const double wh = LH.dot(P);
Eigen::Matrix<double, 2, 2> standard;
standard << L45, LH;
Eigen::Matrix<double, 2, 1> W;
W << w45, wh;
const Eigen::Matrix<double, 2, 1> intersection =
standard.inverse() * W;
bool is_inside_h;
const auto adjusted_pos_error_h =
DoCoerceGoal(pos_poly, LH, wh, drive_error, &is_inside_h);
const auto adjusted_pos_error_45 =
DoCoerceGoal(pos_poly, L45, w45, intersection, nullptr);
if (pos_poly.IsInside(intersection)) {
adjusted_pos_error = adjusted_pos_error_h;
} else {
if (is_inside_h) {
if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) {
adjusted_pos_error = adjusted_pos_error_h;
} else {
adjusted_pos_error = adjusted_pos_error_45;
}
} else {
adjusted_pos_error = adjusted_pos_error_45;
}
}
}
LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error);
mutable_U() =
velocity_K * velocity_error + position_K * T * adjusted_pos_error;
LOG_MATRIX(DEBUG, "U is now", U());
} else {
output_was_capped_ = false;
}
}
const ::aos::controls::HPolytope<2> U_Poly_;
Eigen::Matrix<double, 2, 2> T, T_inverse;
bool output_was_capped_ = false;;
};
DrivetrainMotorsSS()
: loop_(new LimitedDrivetrainLoop(
constants::GetValues().make_drivetrain_loop())),
filtered_offset_(0.0),
gyro_(0.0),
left_goal_(0.0),
right_goal_(0.0),
raw_left_(0.0),
raw_right_(0.0) {
// High gear on both.
loop_->set_controller_index(3);
}
void SetGoal(double left, double left_velocity, double right,
double right_velocity) {
left_goal_ = left;
right_goal_ = right;
loop_->mutable_R() << left, left_velocity, right, right_velocity;
}
void SetRawPosition(double left, double right) {
raw_right_ = right;
raw_left_ = left;
Eigen::Matrix<double, 2, 1> Y;
Y << left + filtered_offset_, right - filtered_offset_;
loop_->Correct(Y);
}
void SetPosition(double left, double right, double gyro) {
// Decay the offset quickly because this gyro is great.
const double offset =
(right - left - gyro * constants::GetValues().turn_width) / 2.0;
filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_;
gyro_ = gyro;
SetRawPosition(left, right);
}
void SetExternalMotors(double left_voltage, double right_voltage) {
loop_->mutable_U() << left_voltage, right_voltage;
}
void Update(bool stop_motors, bool enable_control_loop) {
if (enable_control_loop) {
loop_->Update(stop_motors);
} else {
if (stop_motors) {
loop_->mutable_U().setZero();
loop_->mutable_U_uncapped().setZero();
}
loop_->UpdateObserver();
}
::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat();
LOG_MATRIX(DEBUG, "E", E);
}
double GetEstimatedRobotSpeed() const {
// lets just call the average of left and right velocities close enough
return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2;
}
double GetEstimatedLeftEncoder() const {
return loop_->X_hat(0, 0);
}
double GetEstimatedRightEncoder() const {
return loop_->X_hat(2, 0);
}
bool OutputWasCapped() const {
return loop_->output_was_capped();
}
void SendMotors(DrivetrainQueue::Output *output) const {
if (output) {
output->left_voltage = loop_->U(0, 0);
output->right_voltage = loop_->U(1, 0);
output->left_high = true;
output->right_high = true;
}
}
const LimitedDrivetrainLoop &loop() const { return *loop_; }
private:
::std::unique_ptr<LimitedDrivetrainLoop> loop_;
double filtered_offset_;
double gyro_;
double left_goal_;
double right_goal_;
double raw_left_;
double raw_right_;
};
void DrivetrainLoop::RunIteration(const DrivetrainQueue::Goal *goal,
const DrivetrainQueue::Position *position,
DrivetrainQueue::Output *output,
DrivetrainQueue::Status * status) {
// TODO(aschuh): These should be members of the class.
static DrivetrainMotorsSS dt_closedloop;
static PolyDrivetrain dt_openloop;
bool bad_pos = false;
if (position == nullptr) {
LOG_INTERVAL(no_position_);
bad_pos = true;
}
no_position_.Print();
bool control_loop_driving = false;
if (goal) {
double wheel = goal->steering;
double throttle = goal->throttle;
bool quickturn = goal->quickturn;
#if HAVE_SHIFTERS
bool highgear = goal->highgear;
#endif
control_loop_driving = goal->control_loop_driving;
double left_goal = goal->left_goal;
double right_goal = goal->right_goal;
dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal, right_goal,
goal->right_velocity_goal);
#if HAVE_SHIFTERS
dt_openloop.SetGoal(wheel, throttle, quickturn, highgear);
#else
dt_openloop.SetGoal(wheel, throttle, quickturn, false);
#endif
}
if (!bad_pos) {
const double left_encoder = position->left_encoder;
const double right_encoder = position->right_encoder;
if (gyro_reading.FetchLatest()) {
LOG_STRUCT(DEBUG, "using", *gyro_reading.get());
dt_closedloop.SetPosition(left_encoder, right_encoder,
gyro_reading->angle);
} else {
dt_closedloop.SetRawPosition(left_encoder, right_encoder);
}
}
dt_openloop.SetPosition(position);
dt_openloop.Update();
if (control_loop_driving) {
dt_closedloop.Update(output == NULL, true);
dt_closedloop.SendMotors(output);
} else {
dt_openloop.SendMotors(output);
if (output) {
dt_closedloop.SetExternalMotors(output->left_voltage,
output->right_voltage);
}
dt_closedloop.Update(output == NULL, false);
}
// set the output status of the control loop state
if (status) {
bool done = false;
if (goal) {
done = ((::std::abs(goal->left_goal -
dt_closedloop.GetEstimatedLeftEncoder()) <
constants::GetValues().drivetrain_done_distance) &&
(::std::abs(goal->right_goal -
dt_closedloop.GetEstimatedRightEncoder()) <
constants::GetValues().drivetrain_done_distance));
}
status->is_done = done;
status->robot_speed = dt_closedloop.GetEstimatedRobotSpeed();
status->filtered_left_position = dt_closedloop.GetEstimatedLeftEncoder();
status->filtered_right_position = dt_closedloop.GetEstimatedRightEncoder();
status->filtered_left_velocity = dt_closedloop.loop().X_hat(1, 0);
status->filtered_right_velocity = dt_closedloop.loop().X_hat(3, 0);
status->output_was_capped = dt_closedloop.OutputWasCapped();
status->uncapped_left_voltage = dt_closedloop.loop().U_uncapped(0, 0);
status->uncapped_right_voltage = dt_closedloop.loop().U_uncapped(1, 0);
}
}
} // namespace control_loops
} // namespace frc971