| #include "y2014/control_loops/drivetrain/drivetrain.h" |
| |
| #include <stdio.h> |
| #include <sched.h> |
| #include <cmath> |
| #include <memory> |
| #include "Eigen/Dense" |
| |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/controls/polytope.h" |
| #include "aos/common/commonmath.h" |
| #include "aos/common/logging/queue_logging.h" |
| #include "aos/common/logging/matrix_logging.h" |
| |
| #include "y2014/constants.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| #include "frc971/control_loops/coerce_goal.h" |
| #include "y2014/control_loops/drivetrain/drivetrain.q.h" |
| #include "y2014/control_loops/drivetrain/drivetrain_dog_motor_plant.h" |
| #include "y2014/control_loops/drivetrain/polydrivetrain.h" |
| #include "frc971/queues/gyro.q.h" |
| #include "frc971/shifter_hall_effect.h" |
| |
| // A consistent way to mark code that goes away without shifters. It's still |
| // here because we will have shifters again in the future. |
| #define HAVE_SHIFTERS 1 |
| |
| using frc971::sensors::gyro_reading; |
| |
| namespace frc971 { |
| namespace control_loops { |
| |
| using ::y2014::control_loops::drivetrain::kDt; |
| |
| class DrivetrainMotorsSS { |
| public: |
| class LimitedDrivetrainLoop : public StateFeedbackLoop<4, 2, 2> { |
| public: |
| LimitedDrivetrainLoop(StateFeedbackLoop<4, 2, 2> &&loop) |
| : StateFeedbackLoop<4, 2, 2>(::std::move(loop)), |
| U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0, |
| -1, 0, |
| 0, 1, |
| 0, -1).finished(), |
| (Eigen::Matrix<double, 4, 1>() << 12.0, 12.0, |
| 12.0, 12.0).finished()) { |
| ::aos::controls::HPolytope<0>::Init(); |
| T << 1, -1, 1, 1; |
| T_inverse = T.inverse(); |
| } |
| |
| bool output_was_capped() const { |
| return output_was_capped_; |
| } |
| |
| private: |
| virtual void CapU() { |
| const Eigen::Matrix<double, 4, 1> error = R() - X_hat(); |
| |
| if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) { |
| mutable_U() = |
| U() * 12.0 / ::std::max(::std::abs(U(0, 0)), ::std::abs(U(1, 0))); |
| LOG_MATRIX(DEBUG, "U is now", U()); |
| // TODO(Austin): Figure out why the polytope stuff wasn't working and |
| // remove this hack. |
| output_was_capped_ = true; |
| return; |
| |
| LOG_MATRIX(DEBUG, "U at start", U()); |
| LOG_MATRIX(DEBUG, "R at start", R()); |
| LOG_MATRIX(DEBUG, "Xhat at start", X_hat()); |
| |
| Eigen::Matrix<double, 2, 2> position_K; |
| position_K << K(0, 0), K(0, 2), |
| K(1, 0), K(1, 2); |
| Eigen::Matrix<double, 2, 2> velocity_K; |
| velocity_K << K(0, 1), K(0, 3), |
| K(1, 1), K(1, 3); |
| |
| Eigen::Matrix<double, 2, 1> position_error; |
| position_error << error(0, 0), error(2, 0); |
| const auto drive_error = T_inverse * position_error; |
| Eigen::Matrix<double, 2, 1> velocity_error; |
| velocity_error << error(1, 0), error(3, 0); |
| LOG_MATRIX(DEBUG, "error", error); |
| |
| const auto &poly = U_Poly_; |
| const Eigen::Matrix<double, 4, 2> pos_poly_H = |
| poly.H() * position_K * T; |
| const Eigen::Matrix<double, 4, 1> pos_poly_k = |
| poly.k() - poly.H() * velocity_K * velocity_error; |
| const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k); |
| |
| Eigen::Matrix<double, 2, 1> adjusted_pos_error; |
| { |
| const auto &P = drive_error; |
| |
| Eigen::Matrix<double, 1, 2> L45; |
| L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0)); |
| const double w45 = 0; |
| |
| Eigen::Matrix<double, 1, 2> LH; |
| if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) { |
| LH << 0, 1; |
| } else { |
| LH << 1, 0; |
| } |
| const double wh = LH.dot(P); |
| |
| Eigen::Matrix<double, 2, 2> standard; |
| standard << L45, LH; |
| Eigen::Matrix<double, 2, 1> W; |
| W << w45, wh; |
| const Eigen::Matrix<double, 2, 1> intersection = |
| standard.inverse() * W; |
| |
| bool is_inside_h; |
| const auto adjusted_pos_error_h = |
| DoCoerceGoal(pos_poly, LH, wh, drive_error, &is_inside_h); |
| const auto adjusted_pos_error_45 = |
| DoCoerceGoal(pos_poly, L45, w45, intersection, nullptr); |
| if (pos_poly.IsInside(intersection)) { |
| adjusted_pos_error = adjusted_pos_error_h; |
| } else { |
| if (is_inside_h) { |
| if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) { |
| adjusted_pos_error = adjusted_pos_error_h; |
| } else { |
| adjusted_pos_error = adjusted_pos_error_45; |
| } |
| } else { |
| adjusted_pos_error = adjusted_pos_error_45; |
| } |
| } |
| } |
| |
| LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error); |
| mutable_U() = |
| velocity_K * velocity_error + position_K * T * adjusted_pos_error; |
| LOG_MATRIX(DEBUG, "U is now", U()); |
| } else { |
| output_was_capped_ = false; |
| } |
| } |
| |
| const ::aos::controls::HPolytope<2> U_Poly_; |
| Eigen::Matrix<double, 2, 2> T, T_inverse; |
| bool output_was_capped_ = false;; |
| }; |
| |
| DrivetrainMotorsSS() |
| : loop_(new LimitedDrivetrainLoop( |
| constants::GetValues().make_drivetrain_loop())), |
| filtered_offset_(0.0), |
| gyro_(0.0), |
| left_goal_(0.0), |
| right_goal_(0.0), |
| raw_left_(0.0), |
| raw_right_(0.0) { |
| // High gear on both. |
| loop_->set_controller_index(3); |
| } |
| |
| void SetGoal(double left, double left_velocity, double right, |
| double right_velocity) { |
| left_goal_ = left; |
| right_goal_ = right; |
| loop_->mutable_R() << left, left_velocity, right, right_velocity; |
| } |
| void SetRawPosition(double left, double right) { |
| raw_right_ = right; |
| raw_left_ = left; |
| Eigen::Matrix<double, 2, 1> Y; |
| Y << left + filtered_offset_, right - filtered_offset_; |
| loop_->Correct(Y); |
| } |
| void SetPosition(double left, double right, double gyro) { |
| // Decay the offset quickly because this gyro is great. |
| const double offset = |
| (right - left - gyro * constants::GetValues().turn_width) / 2.0; |
| filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_; |
| gyro_ = gyro; |
| SetRawPosition(left, right); |
| } |
| |
| void SetExternalMotors(double left_voltage, double right_voltage) { |
| loop_->mutable_U() << left_voltage, right_voltage; |
| } |
| |
| void Update(bool stop_motors, bool enable_control_loop) { |
| if (enable_control_loop) { |
| loop_->Update(stop_motors); |
| } else { |
| if (stop_motors) { |
| loop_->mutable_U().setZero(); |
| loop_->mutable_U_uncapped().setZero(); |
| } |
| loop_->UpdateObserver(); |
| } |
| ::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat(); |
| LOG_MATRIX(DEBUG, "E", E); |
| } |
| |
| double GetEstimatedRobotSpeed() const { |
| // lets just call the average of left and right velocities close enough |
| return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2; |
| } |
| |
| double GetEstimatedLeftEncoder() const { |
| return loop_->X_hat(0, 0); |
| } |
| |
| double GetEstimatedRightEncoder() const { |
| return loop_->X_hat(2, 0); |
| } |
| |
| bool OutputWasCapped() const { |
| return loop_->output_was_capped(); |
| } |
| |
| void SendMotors(DrivetrainQueue::Output *output) const { |
| if (output) { |
| output->left_voltage = loop_->U(0, 0); |
| output->right_voltage = loop_->U(1, 0); |
| output->left_high = true; |
| output->right_high = true; |
| } |
| } |
| |
| const LimitedDrivetrainLoop &loop() const { return *loop_; } |
| |
| private: |
| ::std::unique_ptr<LimitedDrivetrainLoop> loop_; |
| |
| double filtered_offset_; |
| double gyro_; |
| double left_goal_; |
| double right_goal_; |
| double raw_left_; |
| double raw_right_; |
| }; |
| |
| |
| void DrivetrainLoop::RunIteration(const DrivetrainQueue::Goal *goal, |
| const DrivetrainQueue::Position *position, |
| DrivetrainQueue::Output *output, |
| DrivetrainQueue::Status * status) { |
| // TODO(aschuh): These should be members of the class. |
| static DrivetrainMotorsSS dt_closedloop; |
| static PolyDrivetrain dt_openloop; |
| |
| bool bad_pos = false; |
| if (position == nullptr) { |
| LOG_INTERVAL(no_position_); |
| bad_pos = true; |
| } |
| no_position_.Print(); |
| |
| bool control_loop_driving = false; |
| if (goal) { |
| double wheel = goal->steering; |
| double throttle = goal->throttle; |
| bool quickturn = goal->quickturn; |
| #if HAVE_SHIFTERS |
| bool highgear = goal->highgear; |
| #endif |
| |
| control_loop_driving = goal->control_loop_driving; |
| double left_goal = goal->left_goal; |
| double right_goal = goal->right_goal; |
| |
| dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal, right_goal, |
| goal->right_velocity_goal); |
| #if HAVE_SHIFTERS |
| dt_openloop.SetGoal(wheel, throttle, quickturn, highgear); |
| #else |
| dt_openloop.SetGoal(wheel, throttle, quickturn, false); |
| #endif |
| } |
| |
| if (!bad_pos) { |
| const double left_encoder = position->left_encoder; |
| const double right_encoder = position->right_encoder; |
| if (gyro_reading.FetchLatest()) { |
| LOG_STRUCT(DEBUG, "using", *gyro_reading.get()); |
| dt_closedloop.SetPosition(left_encoder, right_encoder, |
| gyro_reading->angle); |
| } else { |
| dt_closedloop.SetRawPosition(left_encoder, right_encoder); |
| } |
| } |
| dt_openloop.SetPosition(position); |
| dt_openloop.Update(); |
| |
| if (control_loop_driving) { |
| dt_closedloop.Update(output == NULL, true); |
| dt_closedloop.SendMotors(output); |
| } else { |
| dt_openloop.SendMotors(output); |
| if (output) { |
| dt_closedloop.SetExternalMotors(output->left_voltage, |
| output->right_voltage); |
| } |
| dt_closedloop.Update(output == NULL, false); |
| } |
| |
| // set the output status of the control loop state |
| if (status) { |
| bool done = false; |
| if (goal) { |
| done = ((::std::abs(goal->left_goal - |
| dt_closedloop.GetEstimatedLeftEncoder()) < |
| constants::GetValues().drivetrain_done_distance) && |
| (::std::abs(goal->right_goal - |
| dt_closedloop.GetEstimatedRightEncoder()) < |
| constants::GetValues().drivetrain_done_distance)); |
| } |
| status->is_done = done; |
| status->robot_speed = dt_closedloop.GetEstimatedRobotSpeed(); |
| status->filtered_left_position = dt_closedloop.GetEstimatedLeftEncoder(); |
| status->filtered_right_position = dt_closedloop.GetEstimatedRightEncoder(); |
| |
| status->filtered_left_velocity = dt_closedloop.loop().X_hat(1, 0); |
| status->filtered_right_velocity = dt_closedloop.loop().X_hat(3, 0); |
| status->output_was_capped = dt_closedloop.OutputWasCapped(); |
| status->uncapped_left_voltage = dt_closedloop.loop().U_uncapped(0, 0); |
| status->uncapped_right_voltage = dt_closedloop.loop().U_uncapped(1, 0); |
| } |
| } |
| |
| } // namespace control_loops |
| } // namespace frc971 |