blob: c64f38f3d65f2a98ce6f0dafa4098b421fdd6370 [file] [log] [blame]
#ifndef FRC971_ZEROING_ZEROING_H_
#define FRC971_ZEROING_ZEROING_H_
#include <cstdint>
#include <vector>
#include "frc971/control_loops/control_loops.q.h"
#include "frc971/constants.h"
// TODO(pschrader): Flag an error if encoder index pulse is not n revolutions
// away from the last one (i.e. got extra counts from noise, etc..)
//
// TODO(pschrader): Flag error if the pot disagrees too much with the encoder
// after being zeroed.
//
// TODO(pschrader): Watch the offset over long periods of time and flag if it
// gets too far away from the initial value.
namespace frc971 {
namespace zeroing {
class ZeroingEstimator {
public:
virtual ~ZeroingEstimator(){}
// Returns true if the logic considers the corresponding mechanism to be
// zeroed. It return false otherwise. For example, right after a call to
// Reset() this returns false.
virtual bool zeroed() const = 0;
// Returns the estimated starting position of the corresponding mechansim. In
// some contexts we refer to this as the "offset".
virtual double offset() const = 0;
// Returns the estimated position of the corresponding mechanism. This value
// is in SI units. For example, the estimator for the elevator would return a
// value in meters for the height relative to absolute zero.
virtual double position() const = 0;
// Returns true if an error has occurred, false otherwise. This gets reset to
// false when the Reset() function is called.
virtual bool error() const = 0;
};
// Estimates the position with an incremental encoder with an index pulse and a
// potentiometer.
class PotAndIndexPulseZeroingEstimator : public ZeroingEstimator {
public:
using Position = PotAndIndexPosition;
using ZeroingConstants = constants::PotAndIndexPulseZeroingConstants;
using State = EstimatorState;
PotAndIndexPulseZeroingEstimator(
const constants::PotAndIndexPulseZeroingConstants &constants);
// Update the internal logic with the next sensor values.
void UpdateEstimate(const PotAndIndexPosition &info);
// Reset the internal logic so it needs to be re-zeroed.
void Reset();
// Manually trigger an internal error. This is used for testing the error
// logic.
void TriggerError();
bool error() const override { return error_; }
bool zeroed() const override { return zeroed_; }
double position() const override { return position_; }
double offset() const override { return start_pos_; }
// Return the estimated position of the corresponding mechanism not using the
// index pulse, even if one is available.
double filtered_position() const { return filtered_position_; }
// Returns a number between 0 and 1 that represents the percentage of the
// samples being used in the moving average filter. A value of 0.0 means that
// no samples are being used. A value of 1.0 means that the filter is using
// as many samples as it has room for. For example, after a Reset() this
// value returns 0.0. As more samples get added with UpdateEstimate(...) the
// return value starts increasing to 1.0.
double offset_ratio_ready() const {
return start_pos_samples_.size() /
static_cast<double>(constants_.average_filter_size);
}
// Returns true if the sample buffer is full.
bool offset_ready() const {
return start_pos_samples_.size() == constants_.average_filter_size;
}
private:
// This function calculates the start position given the internal state and
// the provided `latched_encoder' value.
double CalculateStartPosition(double start_average,
double latched_encoder) const;
// The zeroing constants used to describe the configuration of the system.
const constants::PotAndIndexPulseZeroingConstants constants_;
// The estimated position.
double position_;
// The unzeroed filtered position.
double filtered_position_ = 0.0;
// The next position in 'start_pos_samples_' to be used to store the next
// sample.
int samples_idx_;
// Last 'max_sample_count_' samples for start positions.
std::vector<double> start_pos_samples_;
// The estimated starting position of the mechanism. We also call this the
// 'offset' in some contexts.
double start_pos_;
// Flag for triggering logic that takes note of the current index pulse count
// after a reset. See `last_used_index_pulse_count_'.
bool wait_for_index_pulse_;
// After a reset we keep track of the index pulse count with this. Only after
// the index pulse count changes (i.e. increments at least once or wraps
// around) will we consider the mechanism zeroed. We also use this to store
// the most recent `PotAndIndexPosition::index_pulses' value when the start
// position was calculated. It helps us calculate the start position only on
// index pulses to reject corrupted intermediate data.
uint32_t last_used_index_pulse_count_;
// Marker to track whether we're fully zeroed yet or not.
bool zeroed_;
// Marker to track whether an error has occurred. This gets reset to false
// whenever Reset() is called.
bool error_;
// Stores the position "start_pos" variable the first time the program
// is zeroed.
double first_start_pos_;
};
// Estimates the position with an absolute encoder which also reports
// incremental counts, and a potentiometer.
class PotAndAbsEncoderZeroingEstimator : public ZeroingEstimator {
public:
using Position = PotAndAbsolutePosition;
using ZeroingConstants = constants::PotAndAbsoluteEncoderZeroingConstants;
using State = AbsoluteEstimatorState;
PotAndAbsEncoderZeroingEstimator(
const constants::PotAndAbsoluteEncoderZeroingConstants &constants);
// Resets the internal logic so it needs to be re-zeroed.
void Reset();
// Updates the sensor values for the zeroing logic.
void UpdateEstimate(const PotAndAbsolutePosition &info);
bool zeroed() const override { return zeroed_; }
double position() const override { return position_; }
double offset() const override { return offset_; }
// TODO(austin): Actually implement this.
bool error() const override { return false; }
// Returns true if the sample buffer is full.
bool offset_ready() const {
return relative_to_absolute_offset_samples_.size() ==
constants_.average_filter_size &&
offset_samples_.size() == constants_.average_filter_size;
}
// Return the estimated position of the corresponding mechanism not using the
// index pulse, even if one is available.
double filtered_position() const { return filtered_position_; }
private:
// The zeroing constants used to describe the configuration of the system.
const constants::PotAndAbsoluteEncoderZeroingConstants constants_;
// True if the mechanism is zeroed.
bool zeroed_;
// Samples of the offset needed to line the relative encoder up with the
// absolute encoder.
::std::vector<double> relative_to_absolute_offset_samples_;
// Offset between the Pot and Relative encoder position.
::std::vector<double> offset_samples_;
// Estimated start position of the mechanism
double offset_;
// The next position in 'relative_to_absolute_offset_samples_' and
// 'encoder_samples_' to be used to store the next sample.
int samples_idx_;
// The unzeroed filtered position.
double filtered_position_ = 0.0;
// The filtered position.
double position_ = 0.0;
};
// Populates an EstimatorState struct with information from the zeroing
// estimator.
void PopulateEstimatorState(const PotAndIndexPulseZeroingEstimator &estimator,
EstimatorState *state);
void PopulateEstimatorState(const PotAndAbsEncoderZeroingEstimator &estimator,
AbsoluteEstimatorState *state);
} // namespace zeroing
} // namespace frc971
#endif // FRC971_ZEROING_ZEROING_H_