| #!/usr/bin/python3 |
| from __future__ import print_function |
| import os |
| import sys |
| from color import palette |
| from graph import Graph |
| import gi |
| import numpy as np |
| gi.require_version('Gtk', '3.0') |
| from gi.repository import Gdk, Gtk, GLib |
| import cairo |
| from libspline import Spline, DistanceSpline |
| import enum |
| import json |
| from constants import FIELD |
| from constants import get_json_folder |
| from constants import ROBOT_SIDE_TO_BALL_CENTER, ROBOT_SIDE_TO_HATCH_PANEL, HATCH_PANEL_WIDTH, BALL_RADIUS |
| from drawing_constants import set_color, draw_px_cross, draw_px_x, display_text, draw_control_points |
| from points import Points |
| import time |
| |
| |
| class Mode(enum.Enum): |
| kViewing = 0 |
| kPlacing = 1 |
| kEditing = 2 |
| |
| |
| class FieldWidget(Gtk.DrawingArea): |
| """Create a GTK+ widget on which we will draw using Cairo""" |
| def __init__(self): |
| super(FieldWidget, self).__init__() |
| self.set_field(FIELD) |
| self.set_size_request(self.mToPx(self.field.width), |
| self.mToPx(self.field.length)) |
| |
| self.points = Points() |
| self.graph = Graph() |
| self.graph.cursor_watcher = self |
| self.set_vexpand(True) |
| self.set_hexpand(True) |
| # list of multisplines |
| self.multispline_stack = [] |
| # init field drawing |
| # add default spline for testing purposes |
| # init editing / viewing modes and pointer location |
| self.mode = Mode.kPlacing |
| self.mousex = 0 |
| self.mousey = 0 |
| self.module_path = os.path.dirname(os.path.realpath(sys.argv[0])) |
| self.path_to_export = os.path.join(self.module_path, |
| 'points_for_pathedit.json') |
| |
| # For the editing mode |
| self.index_of_edit = -1 # Can't be zero beause array starts at 0 |
| self.held_x = 0 |
| self.spline_edit = -1 |
| |
| self.zoom_transform = cairo.Matrix() |
| |
| self.set_events(Gdk.EventMask.BUTTON_PRESS_MASK |
| | Gdk.EventMask.BUTTON_PRESS_MASK |
| | Gdk.EventMask.BUTTON_RELEASE_MASK |
| | Gdk.EventMask.POINTER_MOTION_MASK |
| | Gdk.EventMask.SCROLL_MASK) |
| |
| def set_field(self, field): |
| self.field = field |
| try: |
| self.field_png = cairo.ImageSurface.create_from_png( |
| "frc971/control_loops/python/field_images/" + |
| self.field.field_id + ".png") |
| except cairo.Error: |
| self.field_png = None |
| |
| self.queue_draw() |
| |
| def invert(self, transform): |
| xx, yx, xy, yy, x0, y0 = transform |
| matrix = cairo.Matrix(xx, yx, xy, yy, x0, y0) |
| matrix.invert() |
| return matrix |
| |
| # returns the transform from widget space to field space |
| @property |
| def input_transform(self): |
| # the transform for input needs to be the opposite of the transform for drawing |
| return self.invert(self.field_transform.multiply(self.zoom_transform)) |
| |
| @property |
| def field_transform(self): |
| field_transform = cairo.Matrix() |
| field_transform.scale(1, -1) # flipped y-axis |
| field_transform.scale(1 / self.pxToM_scale(), 1 / self.pxToM_scale()) |
| field_transform.translate(self.field.width / 2, |
| -1 * self.field.length / 2) |
| return field_transform |
| |
| # returns the scale from pixels in field space to meters in field space |
| def pxToM_scale(self): |
| available_space = self.get_allocation() |
| return np.maximum(self.field.width / available_space.width, |
| self.field.length / available_space.height) |
| |
| def pxToM(self, p): |
| return p * self.pxToM_scale() |
| |
| def mToPx(self, m): |
| return m / self.pxToM_scale() |
| |
| def draw_robot_at_point(self, cr, spline, t): |
| """Draws the robot at a point along a Spline or DistanceSpline""" |
| |
| # we accept both Spline and DistanceSpline |
| if type(spline) is Spline: |
| point = spline.Point(t) |
| theta = spline.Theta(t) |
| elif type(spline) is DistanceSpline: |
| point = spline.XY(t) |
| theta = spline.Theta(t) |
| else: |
| raise TypeError( |
| f"expected Spline or DistanceSpline (got {type(spline)})") |
| |
| # Transform so that +y is forward along the spline |
| transform = cairo.Matrix() |
| transform.translate(*point) |
| transform.rotate(theta - np.pi / 2) |
| |
| cr.save() |
| cr.set_matrix(transform.multiply(cr.get_matrix())) |
| |
| # Draw Robot |
| set_color(cr, palette["BLACK"]) |
| cr.rectangle(-self.field.robot.width / 2, -self.field.robot.length / 2, |
| self.field.robot.width, self.field.robot.length) |
| cr.stroke() |
| |
| #Draw Ball |
| set_color(cr, palette["ORANGE"], 0.5) |
| cr.arc(0, self.field.robot.length / 2 + BALL_RADIUS, BALL_RADIUS, 0, |
| 2 * np.pi) |
| cr.stroke() |
| |
| # undo the transform |
| cr.restore() |
| |
| def do_draw(self, cr): # main |
| cr.set_matrix( |
| self.field_transform.multiply(self.zoom_transform).multiply( |
| cr.get_matrix())) |
| |
| cr.save() |
| |
| set_color(cr, palette["BLACK"]) |
| |
| cr.set_line_width(self.pxToM(1)) |
| cr.rectangle(-0.5 * self.field.width, -0.5 * self.field.length, |
| self.field.width, self.field.length) |
| cr.set_line_join(cairo.LINE_JOIN_ROUND) |
| cr.stroke() |
| |
| if self.field_png: |
| cr.save() |
| cr.translate(-0.5 * self.field.width, 0.5 * self.field.length) |
| cr.scale( |
| self.field.width / self.field_png.get_width(), |
| -self.field.length / self.field_png.get_height(), |
| ) |
| cr.set_source_surface(self.field_png) |
| cr.paint() |
| cr.restore() |
| |
| # update everything |
| |
| cr.set_line_width(self.pxToM(1)) |
| if self.mode == Mode.kPlacing or self.mode == Mode.kViewing: |
| set_color(cr, palette["BLACK"]) |
| for i, point in enumerate(self.points.getPoints()): |
| draw_px_x(cr, point[0], point[1], self.pxToM(2)) |
| set_color(cr, palette["WHITE"]) |
| elif self.mode == Mode.kEditing: |
| set_color(cr, palette["BLACK"]) |
| if self.points.getSplines(): |
| self.draw_splines(cr) |
| for i, points in enumerate(self.points.getSplines()): |
| points = [np.array([x, y]) for (x, y) in points] |
| draw_control_points(cr, |
| points, |
| width=self.pxToM(5), |
| radius=self.pxToM(2)) |
| |
| p0, p1, p2, p3, p4, p5 = points |
| first_tangent = p0 + 2.0 * (p1 - p0) |
| second_tangent = p5 + 2.0 * (p4 - p5) |
| cr.set_source_rgb(0, 0.5, 0) |
| cr.move_to(*p0) |
| cr.set_line_width(self.pxToM(1.0)) |
| cr.line_to(*first_tangent) |
| cr.move_to(*first_tangent) |
| cr.line_to(*p2) |
| |
| cr.move_to(*p5) |
| cr.line_to(*second_tangent) |
| |
| cr.move_to(*second_tangent) |
| cr.line_to(*p3) |
| |
| cr.stroke() |
| cr.set_line_width(self.pxToM(2)) |
| set_color(cr, palette["WHITE"]) |
| |
| cr.paint_with_alpha(0.2) |
| |
| draw_px_cross(cr, self.mousex, self.mousey, self.pxToM(2)) |
| cr.restore() |
| |
| def draw_splines(self, cr): |
| for i, spline in enumerate(self.points.getLibsplines()): |
| for k in np.linspace(0.02, 1, 200): |
| cr.move_to(*spline.Point(k - 0.008)) |
| cr.line_to(*spline.Point(k)) |
| cr.stroke() |
| if i == 0: |
| self.draw_robot_at_point(cr, spline, 0) |
| self.draw_robot_at_point(cr, spline, 1) |
| |
| mouse = np.array((self.mousex, self.mousey)) |
| |
| # Find the distance along the spline that is closest to the mouse |
| result, distance_spline = self.points.nearest_distance(mouse) |
| |
| # if the mouse is close enough, draw the robot to show its width |
| if result and result.fun < 2: |
| self.draw_robot_at_point(cr, distance_spline, result.x) |
| self.graph.place_cursor(result.x[0]) |
| elif self.graph.cursor: |
| x = self.graph.find_cursor() |
| self.draw_robot_at_point(cr, distance_spline, x) |
| |
| # clear the cursor each draw so that it does not persist |
| # after you move off the spline |
| self.graph.cursor = None |
| |
| def export_json(self, file_name): |
| self.path_to_export = os.path.join( |
| self.module_path, # position of the python |
| "../../..", # root of the repository |
| get_json_folder(self.field), # path from the root |
| file_name # selected file |
| ) |
| |
| # Will export to json file |
| multi_spline = self.points.toMultiSpline() |
| print(multi_spline) |
| with open(self.path_to_export, mode='w') as points_file: |
| json.dump(multi_spline, points_file) |
| |
| def import_json(self, file_name): |
| self.path_to_export = os.path.join( |
| self.module_path, # position of the python |
| "../../..", # root of the repository |
| get_json_folder(self.field), # path from the root |
| file_name # selected file |
| ) |
| |
| # import from json file |
| print("LOADING LOAD FROM " + file_name) # Load takes a few seconds |
| with open(self.path_to_export) as points_file: |
| multi_spline = json.load(points_file) |
| |
| # if people messed with the spline json, |
| # it might not be the right length |
| # so give them a nice error message |
| try: # try to salvage as many segments of the spline as possible |
| self.points.fromMultiSpline(multi_spline) |
| except IndexError: |
| # check if they're both 6+5*(k-1) long |
| expected_length = 6 + 5 * (multi_spline["spline_count"] - 1) |
| x_len = len(multi_spline["spline_x"]) |
| y_len = len(multi_spline["spline_x"]) |
| if x_len is not expected_length: |
| print( |
| "Error: spline x values were not the expected length; expected {} got {}" |
| .format(expected_length, x_len)) |
| elif y_len is not expected_length: |
| print( |
| "Error: spline y values were not the expected length; expected {} got {}" |
| .format(expected_length, y_len)) |
| |
| print("SPLINES LOADED") |
| self.mode = Mode.kEditing |
| self.queue_draw() |
| self.graph.schedule_recalculate(self.points) |
| |
| def attempt_append_multispline(self): |
| if (len(self.multispline_stack) == 0 |
| or self.points.toMultiSpline() != self.multispline_stack[-1]): |
| self.multispline_stack.append(self.points.toMultiSpline()) |
| |
| def clear_graph(self, should_attempt_append=True): |
| if should_attempt_append: |
| self.attempt_append_multispline() |
| self.points = Points() |
| #recalulate graph using new points |
| self.graph.axis.clear() |
| self.graph.queue_draw() |
| #allow placing again |
| self.mode = Mode.kPlacing |
| #redraw entire graph |
| self.queue_draw() |
| |
| def undo(self): |
| try: |
| self.multispline_stack.pop() |
| except IndexError: |
| return |
| if len(self.multispline_stack) == 0: |
| self.clear_graph( |
| should_attempt_append=False) #clear, don't do anything |
| return |
| multispline = self.multispline_stack[-1] |
| if multispline['spline_count'] > 0: |
| self.points.fromMultiSpline(multispline) |
| self.mode = Mode.kEditing |
| else: |
| self.mode = Mode.kPlacing |
| self.clear_graph(should_attempt_append=False) |
| self.queue_draw() |
| |
| def do_key_press_event(self, event): |
| keyval = Gdk.keyval_to_lower(event.keyval) |
| if keyval == Gdk.KEY_z and event.state & Gdk.ModifierType.CONTROL_MASK: |
| self.undo() |
| # TODO: This should be a button |
| if keyval == Gdk.KEY_p: |
| self.mode = Mode.kPlacing |
| # F0 = A1 |
| # B1 = 2F0 - E0 |
| # C1= d0 + 4F0 - 4E0 |
| spline_index = len(self.points.getSplines()) - 1 |
| self.points.resetPoints() |
| self.points.extrapolate( |
| self.points.getSplines()[len(self.points.getSplines()) - 1][5], |
| self.points.getSplines()[len(self.points.getSplines()) - 1][4], |
| self.points.getSplines()[len(self.points.getSplines()) - 1][3]) |
| self.queue_draw() |
| |
| def do_button_release_event(self, event): |
| self.attempt_append_multispline() |
| self.mousex, self.mousey = self.input_transform.transform_point( |
| event.x, event.y) |
| if self.mode == Mode.kEditing: |
| if self.index_of_edit > -1: |
| self.points.setSplines(self.spline_edit, self.index_of_edit, |
| self.mousex, self.mousey) |
| |
| self.points.splineExtrapolate(self.spline_edit) |
| |
| self.points.update_lib_spline() |
| self.graph.schedule_recalculate(self.points) |
| |
| self.index_of_edit = -1 |
| self.spline_edit = -1 |
| |
| def do_button_press_event(self, event): |
| self.mousex, self.mousey = self.input_transform.transform_point( |
| event.x, event.y) |
| |
| if self.mode == Mode.kPlacing: |
| if self.points.add_point(self.mousex, self.mousey): |
| self.mode = Mode.kEditing |
| self.graph.schedule_recalculate(self.points) |
| elif self.mode == Mode.kEditing: |
| # Now after index_of_edit is not -1, the point is selected, so |
| # user can click for new point |
| if self.index_of_edit == -1: |
| # Get clicked point |
| # Find nearest |
| # Move nearest to clicked |
| cur_p = [self.mousex, self.mousey] |
| # Get the distance between each for x and y |
| # Save the index of the point closest |
| nearest = 1 # Max distance away a the selected point can be in meters |
| index_of_closest = 0 |
| for index_splines, points in enumerate( |
| self.points.getSplines()): |
| for index_points, val in enumerate(points): |
| distance = np.sqrt((cur_p[0] - val[0])**2 + |
| (cur_p[1] - val[1])**2) |
| if distance < nearest: |
| nearest = distance |
| index_of_closest = index_points |
| print("Nearest: " + str(nearest)) |
| print("Index: " + str(index_of_closest)) |
| self.index_of_edit = index_of_closest |
| self.spline_edit = index_splines |
| self.held_x = self.mousex |
| self.queue_draw() |
| |
| def do_motion_notify_event(self, event): |
| old_x = self.mousex |
| old_y = self.mousey |
| self.mousex, self.mousey = self.input_transform.transform_point( |
| event.x, event.y) |
| dif_x = self.mousex - old_x |
| dif_y = self.mousey - old_y |
| difs = np.array([dif_x, dif_y]) |
| |
| if self.mode == Mode.kEditing and self.spline_edit != -1: |
| self.points.updates_for_mouse_move(self.index_of_edit, |
| self.spline_edit, self.mousex, |
| self.mousey, difs) |
| |
| self.points.update_lib_spline() |
| self.graph.schedule_recalculate(self.points) |
| self.queue_draw() |
| |
| def do_scroll_event(self, event): |
| |
| self.mousex, self.mousey = self.input_transform.transform_point( |
| event.x, event.y) |
| |
| step_size = self.pxToM(20) # px |
| |
| if event.direction == Gdk.ScrollDirection.UP: |
| # zoom out |
| scale_by = step_size |
| elif event.direction == Gdk.ScrollDirection.DOWN: |
| # zoom in |
| scale_by = -step_size |
| else: |
| return |
| |
| scale = (self.field.width + scale_by) / self.field.width |
| |
| # This restricts the amount it can be scaled. |
| if self.zoom_transform.xx <= 0.5: |
| scale = max(scale, 1) |
| elif self.zoom_transform.xx >= 16: |
| scale = min(scale, 1) |
| |
| # undo the scaled translation that the old zoom transform did |
| x, y = self.invert(self.zoom_transform).transform_point( |
| event.x, event.y) |
| |
| # move the origin to point |
| self.zoom_transform.translate(x, y) |
| |
| # scale from new origin |
| self.zoom_transform.scale(scale, scale) |
| |
| # move back |
| self.zoom_transform.translate(-x, -y) |
| |
| self.queue_draw() |