blob: 38465c9ce4e98dfb976ada80edf517e31b6ed486 [file] [log] [blame]
#include "aos/events/logging/log_reader.h"
#include "aos/events/simulated_event_loop.h"
#include "aos/init.h"
#include "frc971/control_loops/pose.h"
#include "frc971/vision/calibration_generated.h"
#include "frc971/vision/charuco_lib.h"
#include "frc971/vision/target_mapper.h"
#include "opencv2/aruco.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/core/eigen.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "y2023/vision/aprilrobotics.h"
#include "y2023/vision/calibration_data.h"
DEFINE_string(json_path, "target_map.json",
"Specify path for json with initial pose guesses.");
DECLARE_int32(team_number);
namespace y2023 {
namespace vision {
using frc971::vision::CharucoExtractor;
using frc971::vision::DataAdapter;
using frc971::vision::ImageCallback;
using frc971::vision::PoseUtils;
using frc971::vision::TargetMap;
using frc971::vision::TargetMapper;
namespace calibration = frc971::vision::calibration;
// Change reference frame from camera to robot
Eigen::Affine3d CameraToRobotDetection(Eigen::Affine3d H_camrob_target,
Eigen::Affine3d extrinsics) {
const Eigen::Affine3d H_robot_camrob = extrinsics;
const Eigen::Affine3d H_robot_target = H_robot_camrob * H_camrob_target;
return H_robot_target;
}
// Add detected apriltag poses relative to the robot to
// timestamped_target_detections
void HandleAprilTag(const TargetMap &map,
aos::distributed_clock::time_point pi_distributed_time,
std::vector<DataAdapter::TimestampedDetection>
*timestamped_target_detections,
Eigen::Affine3d extrinsics) {
for (const auto *target_pose : *map.target_poses()) {
Eigen::Translation3d T_camera_target = Eigen::Translation3d(
target_pose->x(), target_pose->y(), target_pose->z());
Eigen::Quaterniond R_camera_target =
PoseUtils::EulerAnglesToQuaternion(Eigen::Vector3d(
target_pose->roll(), target_pose->pitch(), target_pose->yaw()));
Eigen::Affine3d H_camcv_target = T_camera_target * R_camera_target;
// With X, Y, Z being robot axes and x, y, z being camera axes,
// x = -Y, y = -Z, z = X
static const Eigen::Affine3d H_camcv_camrob =
Eigen::Affine3d((Eigen::Matrix4d() << 0.0, -1.0, 0.0, 0.0, 0.0, 0.0,
-1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
.finished());
Eigen::Affine3d H_camrob_target = H_camcv_camrob.inverse() * H_camcv_target;
Eigen::Affine3d H_robot_target =
CameraToRobotDetection(H_camrob_target, extrinsics);
ceres::examples::Pose3d target_pose_camera =
PoseUtils::Affine3dToPose3d(H_camrob_target);
double distance_from_camera = target_pose_camera.p.norm();
CHECK(map.has_monotonic_timestamp_ns())
<< "Need detection timestamps for mapping";
timestamped_target_detections->emplace_back(
DataAdapter::TimestampedDetection{
.time = pi_distributed_time,
.H_robot_target = H_robot_target,
.distance_from_camera = distance_from_camera,
.id = static_cast<TargetMapper::TargetId>(target_pose->id())});
}
}
const calibration::CameraCalibration *FindCameraCalibration(
const calibration::CalibrationData *calibration_data,
std::string_view node_name) {
for (const calibration::CameraCalibration *candidate :
*calibration_data->camera_calibrations()) {
if (candidate->node_name()->string_view() != node_name) {
continue;
}
if (candidate->team_number() != FLAGS_team_number) {
continue;
}
return candidate;
}
LOG(FATAL) << ": Failed to find camera calibration for " << node_name
<< " on " << FLAGS_team_number;
}
Eigen::Affine3d CameraExtrinsics(
const calibration::CameraCalibration *camera_calibration) {
const frc971::vision::calibration::TransformationMatrix *transform =
camera_calibration->has_turret_extrinsics()
? camera_calibration->turret_extrinsics()
: camera_calibration->fixed_extrinsics();
cv::Mat result(
4, 4, CV_32F,
const_cast<void *>(static_cast<const void *>(transform->data()->data())));
result.convertTo(result, CV_64F);
CHECK_EQ(result.total(), transform->data()->size());
Eigen::Matrix4d result_eigen;
cv::cv2eigen(result, result_eigen);
return Eigen::Affine3d(result_eigen);
}
// Get images from pi and pass apriltag positions to HandleAprilTag()
void HandlePiCaptures(
aos::EventLoop *pi_event_loop, aos::logger::LogReader *reader,
std::vector<DataAdapter::TimestampedDetection>
*timestamped_target_detections,
std::vector<std::unique_ptr<AprilRoboticsDetector>> *detectors) {
const aos::FlatbufferSpan<calibration::CalibrationData> calibration_data(
CalibrationData());
const auto node_name = pi_event_loop->node()->name()->string_view();
const calibration::CameraCalibration *calibration =
FindCameraCalibration(&calibration_data.message(), node_name);
const auto extrinsics = CameraExtrinsics(calibration);
// TODO(milind): change to /camera once we log at full frequency
static constexpr std::string_view kImageChannel = "/camera/decimated";
detectors->emplace_back(
std::make_unique<AprilRoboticsDetector>(pi_event_loop, kImageChannel));
pi_event_loop->MakeWatcher("/camera", [=](const TargetMap &map) {
aos::distributed_clock::time_point pi_distributed_time =
reader->event_loop_factory()
->GetNodeEventLoopFactory(pi_event_loop->node())
->ToDistributedClock(aos::monotonic_clock::time_point(
aos::monotonic_clock::duration(map.monotonic_timestamp_ns())));
HandleAprilTag(map, pi_distributed_time, timestamped_target_detections,
extrinsics);
});
}
void MappingMain(int argc, char *argv[]) {
std::vector<std::string> unsorted_logfiles =
aos::logger::FindLogs(argc, argv);
std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections;
// open logfiles
aos::logger::LogReader reader(aos::logger::SortParts(unsorted_logfiles));
reader.Register();
std::vector<std::unique_ptr<AprilRoboticsDetector>> detectors;
const aos::Node *pi1 =
aos::configuration::GetNode(reader.configuration(), "pi1");
std::unique_ptr<aos::EventLoop> pi1_event_loop =
reader.event_loop_factory()->MakeEventLoop("pi1", pi1);
HandlePiCaptures(pi1_event_loop.get(), &reader,
&timestamped_target_detections, &detectors);
const aos::Node *pi2 =
aos::configuration::GetNode(reader.configuration(), "pi2");
std::unique_ptr<aos::EventLoop> pi2_event_loop =
reader.event_loop_factory()->MakeEventLoop("pi2", pi2);
HandlePiCaptures(pi2_event_loop.get(), &reader,
&timestamped_target_detections, &detectors);
const aos::Node *pi3 =
aos::configuration::GetNode(reader.configuration(), "pi3");
std::unique_ptr<aos::EventLoop> pi3_event_loop =
reader.event_loop_factory()->MakeEventLoop("pi3", pi3);
HandlePiCaptures(pi3_event_loop.get(), &reader,
&timestamped_target_detections, &detectors);
const aos::Node *pi4 =
aos::configuration::GetNode(reader.configuration(), "pi4");
std::unique_ptr<aos::EventLoop> pi4_event_loop =
reader.event_loop_factory()->MakeEventLoop("pi4", pi4);
HandlePiCaptures(pi4_event_loop.get(), &reader,
&timestamped_target_detections, &detectors);
reader.event_loop_factory()->Run();
auto target_constraints =
DataAdapter::MatchTargetDetections(timestamped_target_detections);
frc971::vision::TargetMapper mapper(FLAGS_json_path, target_constraints);
mapper.Solve("charged_up");
// Clean up all the pointers
for (auto &detector_ptr : detectors) {
detector_ptr.reset();
}
}
} // namespace vision
} // namespace y2023
int main(int argc, char **argv) {
aos::InitGoogle(&argc, &argv);
y2023::vision::MappingMain(argc, argv);
}