blob: f33a83ae90b124ce8509bc3a05db5e6689ede384 [file] [log] [blame]
#include "Eigen/Dense"
#include "opencv2/aruco.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/core/eigen.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "aos/configuration.h"
#include "aos/events/logging/log_reader.h"
#include "aos/events/simulated_event_loop.h"
#include "aos/init.h"
#include "aos/util/mcap_logger.h"
#include "frc971/control_loops/pose.h"
#include "frc971/vision/calibration_generated.h"
#include "frc971/vision/target_mapper.h"
#include "frc971/vision/visualize_robot.h"
#include "y2023/constants/simulated_constants_sender.h"
#include "y2023/vision/aprilrobotics.h"
#include "y2023/vision/vision_util.h"
ABSL_FLAG(std::string, config, "",
"If set, override the log's config file with this one.");
ABSL_FLAG(std::string, constants_path, "y2023/constants/constants.json",
"Path to the constant file");
ABSL_FLAG(std::string, dump_constraints_to, "/tmp/mapping_constraints.txt",
"Write the target constraints to this path");
ABSL_FLAG(std::string, dump_stats_to, "/tmp/mapping_stats.txt",
"Write the mapping stats to this path");
ABSL_FLAG(std::string, field_name, "charged_up",
"Field name, for the output json filename and flatbuffer field");
ABSL_FLAG(std::string, json_path, "y2023/vision/maps/target_map.json",
"Specify path for json with initial pose guesses.");
ABSL_FLAG(double, max_pose_error, 1e-6,
"Throw out target poses with a higher pose error than this");
ABSL_FLAG(double, max_pose_error_ratio, 0.4,
"Throw out target poses with a higher pose error ratio than this");
ABSL_FLAG(std::string, mcap_output_path, "", "Log to output.");
ABSL_FLAG(std::string, output_dir, "y2023/vision/maps",
"Directory to write solved target map to");
ABSL_FLAG(double, pause_on_distance, 1.0,
"Pause if two consecutive implied robot positions differ by more "
"than this many meters");
ABSL_FLAG(std::string, pi, "pi1",
"Pi name to generate mcap log for; defaults to pi1.");
ABSL_FLAG(uint64_t, skip_to, 1,
"Start at combined image of this number (1 is the first image)");
ABSL_FLAG(bool, solve, true, "Whether to solve for the field's target map.");
ABSL_FLAG(int32_t, team_number, 0,
"Required: Use the calibration for a node with this team number");
ABSL_FLAG(uint64_t, wait_key, 1,
"Time in ms to wait between images, if no click (0 to wait "
"indefinitely until click).");
ABSL_DECLARE_FLAG(int32_t, frozen_target_id);
ABSL_DECLARE_FLAG(int32_t, min_target_id);
ABSL_DECLARE_FLAG(int32_t, max_target_id);
ABSL_DECLARE_FLAG(bool, visualize_solver);
namespace y2023::vision {
using frc971::vision::DataAdapter;
using frc971::vision::ImageCallback;
using frc971::vision::PoseUtils;
using frc971::vision::TargetMap;
using frc971::vision::TargetMapper;
using frc971::vision::VisualizeRobot;
namespace calibration = frc971::vision::calibration;
// Class to handle reading target poses from a replayed log,
// displaying various debug info, and passing the poses to
// frc971::vision::TargetMapper for field mapping.
class TargetMapperReplay {
public:
TargetMapperReplay(aos::logger::LogReader *reader);
// Solves for the target poses with the accumulated detections if FLAGS_solve.
void MaybeSolve();
private:
static constexpr int kImageWidth = 1280;
// Map from pi node name to color for drawing
static const std::map<std::string, cv::Scalar> kPiColors;
// Contains fixed target poses without solving, for use with visualization
static const TargetMapper kFixedTargetMapper;
// Change reference frame from camera to robot
static Eigen::Affine3d CameraToRobotDetection(Eigen::Affine3d H_camera_target,
Eigen::Affine3d extrinsics);
// Adds april tag detections into the detection list, and handles
// visualization
void HandleAprilTags(const TargetMap &map,
aos::distributed_clock::time_point pi_distributed_time,
std::string node_name, Eigen::Affine3d extrinsics);
// Gets images from the given pi and passes apriltag positions to
// HandleAprilTags()
void HandlePiCaptures(aos::EventLoop *mapping_event_loop);
aos::logger::LogReader *reader_;
// April tag detections from all pis
std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections_;
VisualizeRobot vis_robot_;
// Set of node names which are currently drawn on the display
std::set<std::string> drawn_nodes_;
// Number of frames displayed
size_t display_count_;
// Last time we drew onto the display image.
// This is different from when we actually call imshow() to update
// the display window
aos::distributed_clock::time_point last_draw_time_;
Eigen::Affine3d last_H_world_robot_;
// Maximum distance between consecutive T_world_robot's in one display frame,
// used to determine if we need to pause for the user to see this frame
// clearly
double max_delta_T_world_robot_;
std::vector<std::unique_ptr<aos::EventLoop>> mapping_event_loops_;
std::unique_ptr<aos::EventLoop> mcap_event_loop_;
std::unique_ptr<aos::McapLogger> relogger_;
};
const auto TargetMapperReplay::kPiColors = std::map<std::string, cv::Scalar>{
{"pi1", cv::Scalar(255, 0, 255)},
{"pi2", cv::Scalar(255, 255, 0)},
{"pi3", cv::Scalar(0, 255, 255)},
{"pi4", cv::Scalar(255, 165, 0)},
};
const auto TargetMapperReplay::kFixedTargetMapper = TargetMapper(
absl::GetFlag(FLAGS_json_path), ceres::examples::VectorOfConstraints{});
Eigen::Affine3d TargetMapperReplay::CameraToRobotDetection(
Eigen::Affine3d H_camera_target, Eigen::Affine3d extrinsics) {
const Eigen::Affine3d H_robot_camera = extrinsics;
const Eigen::Affine3d H_robot_target = H_robot_camera * H_camera_target;
return H_robot_target;
}
TargetMapperReplay::TargetMapperReplay(aos::logger::LogReader *reader)
: reader_(reader),
timestamped_target_detections_(),
vis_robot_(cv::Size(1280, 1000)),
drawn_nodes_(),
display_count_(0),
last_draw_time_(aos::distributed_clock::min_time),
last_H_world_robot_(Eigen::Matrix4d::Identity()),
max_delta_T_world_robot_(0.0) {
constexpr size_t kNumPis = 4;
// TODO(milind): add a flag to support replaying april detection from full
// logs as well.
for (size_t i = 1; i <= kNumPis; i++) {
reader_->RemapLoggedChannel(absl::StrFormat("/pi%u/constants", i),
"y2023.Constants");
}
reader_->RemapLoggedChannel("/imu/constants", "y2023.Constants");
reader_->RemapLoggedChannel("/logger/constants", "y2023.Constants");
reader_->RemapLoggedChannel("/roborio/constants", "y2023.Constants");
reader_->Register();
SendSimulationConstants(reader_->event_loop_factory(),
absl::GetFlag(FLAGS_team_number),
absl::GetFlag(FLAGS_constants_path));
for (size_t i = 1; i < kNumPis; i++) {
std::string node_name = "pi" + std::to_string(i);
const aos::Node *pi =
aos::configuration::GetNode(reader_->configuration(), node_name);
mapping_event_loops_.emplace_back(
reader_->event_loop_factory()->MakeEventLoop(node_name + "_mapping",
pi));
HandlePiCaptures(
mapping_event_loops_[mapping_event_loops_.size() - 1].get());
}
if (!absl::GetFlag(FLAGS_mcap_output_path).empty()) {
LOG(INFO) << "Writing out mcap file to "
<< absl::GetFlag(FLAGS_mcap_output_path);
const aos::Node *node = aos::configuration::GetNode(
reader_->configuration(), absl::GetFlag(FLAGS_pi));
reader_->event_loop_factory()->GetNodeEventLoopFactory(node)->OnStartup(
[this, node]() {
mcap_event_loop_ =
reader_->event_loop_factory()->MakeEventLoop("mcap", node);
relogger_ = std::make_unique<aos::McapLogger>(
mcap_event_loop_.get(), absl::GetFlag(FLAGS_mcap_output_path),
aos::McapLogger::Serialization::kFlatbuffer,
aos::McapLogger::CanonicalChannelNames::kShortened,
aos::McapLogger::Compression::kLz4);
});
}
if (absl::GetFlag(FLAGS_visualize_solver)) {
vis_robot_.ClearImage();
const double kFocalLength = 500.0;
vis_robot_.SetDefaultViewpoint(kImageWidth, kFocalLength);
}
}
// Add detected apriltag poses relative to the robot to
// timestamped_target_detections
void TargetMapperReplay::HandleAprilTags(
const TargetMap &map,
aos::distributed_clock::time_point pi_distributed_time,
std::string node_name, Eigen::Affine3d extrinsics) {
bool drew = false;
std::stringstream label;
label << node_name << " - ";
for (const auto *target_pose_fbs : *map.target_poses()) {
// Skip detections with invalid ids
if (static_cast<TargetMapper::TargetId>(target_pose_fbs->id()) <
absl::GetFlag(FLAGS_min_target_id) ||
static_cast<TargetMapper::TargetId>(target_pose_fbs->id()) >
absl::GetFlag(FLAGS_max_target_id)) {
VLOG(1) << "Skipping tag with invalid id of " << target_pose_fbs->id();
continue;
}
// Skip detections with high pose errors
if (target_pose_fbs->pose_error() > absl::GetFlag(FLAGS_max_pose_error)) {
VLOG(1) << "Skipping tag " << target_pose_fbs->id()
<< " due to pose error of " << target_pose_fbs->pose_error();
continue;
}
// Skip detections with high pose error ratios
if (target_pose_fbs->pose_error_ratio() >
absl::GetFlag(FLAGS_max_pose_error_ratio)) {
VLOG(1) << "Skipping tag " << target_pose_fbs->id()
<< " due to pose error ratio of "
<< target_pose_fbs->pose_error_ratio();
continue;
}
const TargetMapper::TargetPose target_pose =
PoseUtils::TargetPoseFromFbs(*target_pose_fbs);
Eigen::Affine3d H_camera_target =
Eigen::Translation3d(target_pose.pose.p) * target_pose.pose.q;
Eigen::Affine3d H_robot_target =
CameraToRobotDetection(H_camera_target, extrinsics);
ceres::examples::Pose3d target_pose_camera =
PoseUtils::Affine3dToPose3d(H_camera_target);
double distance_from_camera = target_pose_camera.p.norm();
double distortion_factor = target_pose_fbs->distortion_factor();
CHECK(map.has_monotonic_timestamp_ns())
<< "Need detection timestamps for mapping";
timestamped_target_detections_.emplace_back(
DataAdapter::TimestampedDetection{
.time = pi_distributed_time,
.H_robot_target = H_robot_target,
.distance_from_camera = distance_from_camera,
.distortion_factor = distortion_factor,
.id = static_cast<TargetMapper::TargetId>(target_pose.id)});
if (absl::GetFlag(FLAGS_visualize_solver)) {
// If we've already drawn this node_name in the current image,
// display the image before clearing and adding the new poses
if (drawn_nodes_.count(node_name) != 0) {
display_count_++;
cv::putText(vis_robot_.image_,
"Poses #" + std::to_string(display_count_),
cv::Point(600, 10), cv::FONT_HERSHEY_PLAIN, 1.0,
cv::Scalar(255, 255, 255));
if (display_count_ >= absl::GetFlag(FLAGS_skip_to)) {
VLOG(1) << "Showing image for node " << node_name
<< " since we've drawn it already";
cv::imshow("View", vis_robot_.image_);
// Pause if delta_T is too large, but only after first image (to make
// sure the delta's are correct
if (max_delta_T_world_robot_ >
absl::GetFlag(FLAGS_pause_on_distance) &&
display_count_ > 1) {
LOG(INFO) << "Pausing since the delta between robot estimates is "
<< max_delta_T_world_robot_ << " which is > threshold of "
<< absl::GetFlag(FLAGS_pause_on_distance);
cv::waitKey(0);
} else {
cv::waitKey(absl::GetFlag(FLAGS_wait_key));
}
max_delta_T_world_robot_ = 0.0;
} else {
VLOG(1) << "At poses #" << std::to_string(display_count_);
}
vis_robot_.ClearImage();
drawn_nodes_.clear();
}
Eigen::Affine3d H_world_target = PoseUtils::Pose3dToAffine3d(
kFixedTargetMapper.GetTargetPoseById(target_pose_fbs->id())->pose);
Eigen::Affine3d H_world_robot = H_world_target * H_robot_target.inverse();
VLOG(2) << node_name << ", id " << target_pose_fbs->id()
<< ", t = " << pi_distributed_time
<< ", pose_error = " << target_pose_fbs->pose_error()
<< ", pose_error_ratio = " << target_pose_fbs->pose_error_ratio()
<< ", robot_pos (x,y,z) = "
<< H_world_robot.translation().transpose();
label << "id " << target_pose_fbs->id() << ": err (% of max): "
<< (target_pose_fbs->pose_error() /
absl::GetFlag(FLAGS_max_pose_error))
<< " err_ratio: " << target_pose_fbs->pose_error_ratio() << " ";
vis_robot_.DrawRobotOutline(H_world_robot, node_name,
kPiColors.at(node_name));
vis_robot_.DrawFrameAxes(H_world_target,
std::to_string(target_pose_fbs->id()),
kPiColors.at(node_name));
double delta_T_world_robot =
(H_world_robot.translation() - last_H_world_robot_.translation())
.norm();
max_delta_T_world_robot_ =
std::max(delta_T_world_robot, max_delta_T_world_robot_);
VLOG(1) << "Drew in info for robot " << node_name << " and target #"
<< target_pose_fbs->id();
drew = true;
last_draw_time_ = pi_distributed_time;
last_H_world_robot_ = H_world_robot;
}
}
if (absl::GetFlag(FLAGS_visualize_solver)) {
if (drew) {
// Collect all the labels from a given node, and add the text
size_t pi_number =
static_cast<size_t>(node_name[node_name.size() - 1] - '0');
cv::putText(vis_robot_.image_, label.str(),
cv::Point(10, 10 + 20 * pi_number), cv::FONT_HERSHEY_PLAIN,
1.0, kPiColors.at(node_name));
drawn_nodes_.emplace(node_name);
} else if (pi_distributed_time - last_draw_time_ >
std::chrono::milliseconds(30) &&
display_count_ >= absl::GetFlag(FLAGS_skip_to)) {
cv::putText(vis_robot_.image_, "No detections", cv::Point(10, 0),
cv::FONT_HERSHEY_PLAIN, 1.0, kPiColors.at(node_name));
// Display and clear the image if we haven't draw in a while
VLOG(1) << "Displaying image due to time lapse";
cv::imshow("View", vis_robot_.image_);
cv::waitKey(absl::GetFlag(FLAGS_wait_key));
vis_robot_.ClearImage();
max_delta_T_world_robot_ = 0.0;
drawn_nodes_.clear();
}
}
}
void TargetMapperReplay::HandlePiCaptures(aos::EventLoop *mapping_event_loop) {
// Get the camera extrinsics
const frc971::constants::ConstantsFetcher<Constants> constants(
mapping_event_loop);
const auto *calibration = FindCameraCalibration(
constants.constants(), mapping_event_loop->node()->name()->string_view());
cv::Mat extrinsics_cv = CameraExtrinsics(calibration).value();
Eigen::Matrix4d extrinsics_matrix;
cv::cv2eigen(extrinsics_cv, extrinsics_matrix);
const auto extrinsics = Eigen::Affine3d(extrinsics_matrix);
mapping_event_loop->MakeWatcher(
"/camera", [this, mapping_event_loop, extrinsics](const TargetMap &map) {
aos::distributed_clock::time_point pi_distributed_time =
reader_->event_loop_factory()
->GetNodeEventLoopFactory(mapping_event_loop->node())
->ToDistributedClock(aos::monotonic_clock::time_point(
aos::monotonic_clock::duration(
map.monotonic_timestamp_ns())));
std::string node_name = mapping_event_loop->node()->name()->str();
HandleAprilTags(map, pi_distributed_time, node_name, extrinsics);
});
}
void TargetMapperReplay::MaybeSolve() {
if (absl::GetFlag(FLAGS_solve)) {
auto target_constraints =
DataAdapter::MatchTargetDetections(timestamped_target_detections_);
// Remove constraints between the two sides of the field - these are
// basically garbage because of how far the camera is. We will use seeding
// below to connect the two sides
target_constraints.erase(
std::remove_if(target_constraints.begin(), target_constraints.end(),
[](const auto &constraint) {
constexpr TargetMapper::TargetId kMaxRedId = 4;
TargetMapper::TargetId min_id =
std::min(constraint.id_begin, constraint.id_end);
TargetMapper::TargetId max_id =
std::max(constraint.id_begin, constraint.id_end);
return (min_id <= kMaxRedId && max_id > kMaxRedId);
}),
target_constraints.end());
LOG(INFO) << "Solving for locations of tags with "
<< target_constraints.size() << " constraints";
TargetMapper mapper(absl::GetFlag(FLAGS_json_path), target_constraints);
mapper.Solve(absl::GetFlag(FLAGS_field_name),
absl::GetFlag(FLAGS_output_dir));
if (!absl::GetFlag(FLAGS_dump_constraints_to).empty()) {
mapper.DumpConstraints(absl::GetFlag(FLAGS_dump_constraints_to));
}
if (!absl::GetFlag(FLAGS_dump_stats_to).empty()) {
mapper.DumpStats(absl::GetFlag(FLAGS_dump_stats_to));
}
}
}
void MappingMain(int argc, char *argv[]) {
std::vector<DataAdapter::TimestampedDetection> timestamped_target_detections;
std::optional<aos::FlatbufferDetachedBuffer<aos::Configuration>> config =
(absl::GetFlag(FLAGS_config).empty()
? std::nullopt
: std::make_optional(
aos::configuration::ReadConfig(absl::GetFlag(FLAGS_config))));
// Open logfiles
aos::logger::LogReader reader(
aos::logger::SortParts(aos::logger::FindLogs(argc, argv)),
config.has_value() ? &config->message() : nullptr);
TargetMapperReplay mapper_replay(&reader);
reader.event_loop_factory()->Run();
mapper_replay.MaybeSolve();
}
} // namespace y2023::vision
int main(int argc, char **argv) {
aos::InitGoogle(&argc, &argv);
y2023::vision::MappingMain(argc, argv);
}