blob: bc3fa217841d521bf1e313e9912c822ae3d4f7fc [file] [log] [blame]
#include "y2015/control_loops/drivetrain/drivetrain.h"
#include <stdio.h>
#include <sched.h>
#include <cmath>
#include <memory>
#include "Eigen/Dense"
#include "aos/common/logging/logging.h"
#include "aos/common/controls/polytope.h"
#include "aos/common/commonmath.h"
#include "aos/common/logging/queue_logging.h"
#include "aos/common/logging/matrix_logging.h"
#include "y2015/constants.h"
#include "frc971/control_loops/state_feedback_loop.h"
#include "frc971/control_loops/coerce_goal.h"
#include "y2015/control_loops/drivetrain/polydrivetrain_cim_plant.h"
#include "y2015/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/queues/gyro.q.h"
#include "frc971/shifter_hall_effect.h"
// A consistent way to mark code that goes away without shifters. It's still
// here because we will have shifters again in the future.
#define HAVE_SHIFTERS 0
using frc971::sensors::gyro_reading;
namespace frc971 {
namespace control_loops {
class DrivetrainMotorsSS {
public:
class LimitedDrivetrainLoop : public StateFeedbackLoop<4, 2, 2> {
public:
LimitedDrivetrainLoop(StateFeedbackLoop<4, 2, 2> &&loop)
: StateFeedbackLoop<4, 2, 2>(::std::move(loop)),
U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0,
-1, 0,
0, 1,
0, -1).finished(),
(Eigen::Matrix<double, 4, 1>() << 12.0, 12.0,
12.0, 12.0).finished()) {
::aos::controls::HPolytope<0>::Init();
T << 1, -1, 1, 1;
T_inverse = T.inverse();
}
bool output_was_capped() const {
return output_was_capped_;
}
private:
virtual void CapU() {
const Eigen::Matrix<double, 4, 1> error = R() - X_hat();
if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) {
mutable_U() =
U() * 12.0 / ::std::max(::std::abs(U(0, 0)), ::std::abs(U(1, 0)));
LOG_MATRIX(DEBUG, "U is now", U());
// TODO(Austin): Figure out why the polytope stuff wasn't working and
// remove this hack.
output_was_capped_ = true;
return;
LOG_MATRIX(DEBUG, "U at start", U());
LOG_MATRIX(DEBUG, "R at start", R());
LOG_MATRIX(DEBUG, "Xhat at start", X_hat());
Eigen::Matrix<double, 2, 2> position_K;
position_K << K(0, 0), K(0, 2),
K(1, 0), K(1, 2);
Eigen::Matrix<double, 2, 2> velocity_K;
velocity_K << K(0, 1), K(0, 3),
K(1, 1), K(1, 3);
Eigen::Matrix<double, 2, 1> position_error;
position_error << error(0, 0), error(2, 0);
const auto drive_error = T_inverse * position_error;
Eigen::Matrix<double, 2, 1> velocity_error;
velocity_error << error(1, 0), error(3, 0);
LOG_MATRIX(DEBUG, "error", error);
const auto &poly = U_Poly_;
const Eigen::Matrix<double, 4, 2> pos_poly_H =
poly.H() * position_K * T;
const Eigen::Matrix<double, 4, 1> pos_poly_k =
poly.k() - poly.H() * velocity_K * velocity_error;
const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k);
Eigen::Matrix<double, 2, 1> adjusted_pos_error;
{
const auto &P = drive_error;
Eigen::Matrix<double, 1, 2> L45;
L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0));
const double w45 = 0;
Eigen::Matrix<double, 1, 2> LH;
if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) {
LH << 0, 1;
} else {
LH << 1, 0;
}
const double wh = LH.dot(P);
Eigen::Matrix<double, 2, 2> standard;
standard << L45, LH;
Eigen::Matrix<double, 2, 1> W;
W << w45, wh;
const Eigen::Matrix<double, 2, 1> intersection =
standard.inverse() * W;
bool is_inside_h;
const auto adjusted_pos_error_h =
DoCoerceGoal(pos_poly, LH, wh, drive_error, &is_inside_h);
const auto adjusted_pos_error_45 =
DoCoerceGoal(pos_poly, L45, w45, intersection, nullptr);
if (pos_poly.IsInside(intersection)) {
adjusted_pos_error = adjusted_pos_error_h;
} else {
if (is_inside_h) {
if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) {
adjusted_pos_error = adjusted_pos_error_h;
} else {
adjusted_pos_error = adjusted_pos_error_45;
}
} else {
adjusted_pos_error = adjusted_pos_error_45;
}
}
}
LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error);
mutable_U() =
velocity_K * velocity_error + position_K * T * adjusted_pos_error;
LOG_MATRIX(DEBUG, "U is now", U());
} else {
output_was_capped_ = false;
}
}
const ::aos::controls::HPolytope<2> U_Poly_;
Eigen::Matrix<double, 2, 2> T, T_inverse;
bool output_was_capped_ = false;;
};
DrivetrainMotorsSS()
: loop_(new LimitedDrivetrainLoop(
constants::GetValues().make_drivetrain_loop())),
filtered_offset_(0.0),
gyro_(0.0),
left_goal_(0.0),
right_goal_(0.0),
raw_left_(0.0),
raw_right_(0.0) {
// Low gear on both.
loop_->set_controller_index(0);
}
void SetGoal(double left, double left_velocity, double right,
double right_velocity) {
left_goal_ = left;
right_goal_ = right;
loop_->mutable_R() << left, left_velocity, right, right_velocity;
}
void SetRawPosition(double left, double right) {
raw_right_ = right;
raw_left_ = left;
Eigen::Matrix<double, 2, 1> Y;
Y << left + filtered_offset_, right - filtered_offset_;
loop_->Correct(Y);
}
void SetPosition(double left, double right, double gyro) {
// Decay the offset quickly because this gyro is great.
const double offset =
(right - left - gyro * constants::GetValues().turn_width) / 2.0;
filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_;
gyro_ = gyro;
SetRawPosition(left, right);
}
void SetExternalMotors(double left_voltage, double right_voltage) {
loop_->mutable_U() << left_voltage, right_voltage;
}
void Update(bool stop_motors, bool enable_control_loop) {
if (enable_control_loop) {
loop_->Update(stop_motors);
} else {
if (stop_motors) {
loop_->mutable_U().setZero();
loop_->mutable_U_uncapped().setZero();
}
loop_->UpdateObserver(loop_->U());
}
::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat();
LOG_MATRIX(DEBUG, "E", E);
}
double GetEstimatedRobotSpeed() const {
// lets just call the average of left and right velocities close enough
return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2;
}
double GetEstimatedLeftEncoder() const {
return loop_->X_hat(0, 0);
}
double GetEstimatedRightEncoder() const {
return loop_->X_hat(2, 0);
}
bool OutputWasCapped() const {
return loop_->output_was_capped();
}
void SendMotors(DrivetrainQueue::Output *output) const {
if (output) {
output->left_voltage = loop_->U(0, 0);
output->right_voltage = loop_->U(1, 0);
output->left_high = false;
output->right_high = false;
}
}
const LimitedDrivetrainLoop &loop() const { return *loop_; }
private:
::std::unique_ptr<LimitedDrivetrainLoop> loop_;
double filtered_offset_;
double gyro_;
double left_goal_;
double right_goal_;
double raw_left_;
double raw_right_;
};
class PolyDrivetrain {
public:
enum Gear {
HIGH,
LOW,
SHIFTING_UP,
SHIFTING_DOWN
};
// Stall Torque in N m
static constexpr double kStallTorque = 2.42;
// Stall Current in Amps
static constexpr double kStallCurrent = 133.0;
// Free Speed in RPM. Used number from last year.
static constexpr double kFreeSpeed = 4650.0;
// Free Current in Amps
static constexpr double kFreeCurrent = 2.7;
// Moment of inertia of the drivetrain in kg m^2
// Just borrowed from last year.
static constexpr double J = 10;
// Mass of the robot, in kg.
static constexpr double m = 68;
// Radius of the robot, in meters (from last year).
static constexpr double rb = 0.9603 / 2.0;
static constexpr double kWheelRadius = 0.0515938;
// Resistance of the motor, divided by the number of motors.
static constexpr double kR = (12.0 / kStallCurrent / 2 + 0.03) / (0.93 * 0.93);
// Motor velocity constant
static constexpr double Kv =
((kFreeSpeed / 60.0 * 2.0 * M_PI) / (12.0 - kR * kFreeCurrent));
// Torque constant
static constexpr double Kt = kStallTorque / kStallCurrent;
PolyDrivetrain()
: U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/,
/*[*/ -1, 0 /*]*/,
/*[*/ 0, 1 /*]*/,
/*[*/ 0, -1 /*]]*/).finished(),
(Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/,
/*[*/ 12 /*]*/,
/*[*/ 12 /*]*/,
/*[*/ 12 /*]]*/).finished()),
loop_(new StateFeedbackLoop<2, 2, 2>(
constants::GetValues().make_v_drivetrain_loop())),
ttrust_(1.1),
wheel_(0.0),
throttle_(0.0),
quickturn_(false),
stale_count_(0),
position_time_delta_(0.01),
left_gear_(LOW),
right_gear_(LOW),
counter_(0) {
last_position_.Zero();
position_.Zero();
}
static bool IsInGear(Gear gear) { return gear == LOW || gear == HIGH; }
static double MotorSpeed(const constants::ShifterHallEffect &hall_effect,
double shifter_position, double velocity) {
// TODO(austin): G_high, G_low and kWheelRadius
const double avg_hall_effect =
(hall_effect.clear_high + hall_effect.clear_low) / 2.0;
if (shifter_position > avg_hall_effect) {
return velocity / constants::GetValues().high_gear_ratio / kWheelRadius;
} else {
return velocity / constants::GetValues().low_gear_ratio / kWheelRadius;
}
}
Gear ComputeGear(const constants::ShifterHallEffect &hall_effect,
double velocity, Gear current) {
const double low_omega = MotorSpeed(hall_effect, 0.0, ::std::abs(velocity));
const double high_omega =
MotorSpeed(hall_effect, 1.0, ::std::abs(velocity));
double high_torque = ((12.0 - high_omega / Kv) * Kt / kR);
double low_torque = ((12.0 - low_omega / Kv) * Kt / kR);
double high_power = high_torque * high_omega;
double low_power = low_torque * low_omega;
// TODO(aschuh): Do this right!
if ((current == HIGH || high_power > low_power + 160) &&
::std::abs(velocity) > 0.14) {
return HIGH;
} else {
return LOW;
}
}
void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) {
const double kWheelNonLinearity = 0.5;
// Apply a sin function that's scaled to make it feel better.
const double angular_range = M_PI_2 * kWheelNonLinearity;
wheel_ = sin(angular_range * wheel) / sin(angular_range);
wheel_ = sin(angular_range * wheel_) / sin(angular_range);
wheel_ *= 2.3;
quickturn_ = quickturn;
static const double kThrottleDeadband = 0.05;
if (::std::abs(throttle) < kThrottleDeadband) {
throttle_ = 0;
} else {
throttle_ = copysign((::std::abs(throttle) - kThrottleDeadband) /
(1.0 - kThrottleDeadband), throttle);
}
// TODO(austin): Fix the upshift logic to include states.
Gear requested_gear;
if (false) {
const auto &values = constants::GetValues();
const double current_left_velocity =
(position_.left_encoder - last_position_.left_encoder) /
position_time_delta_;
const double current_right_velocity =
(position_.right_encoder - last_position_.right_encoder) /
position_time_delta_;
Gear left_requested =
ComputeGear(values.left_drive, current_left_velocity, left_gear_);
Gear right_requested =
ComputeGear(values.right_drive, current_right_velocity, right_gear_);
requested_gear =
(left_requested == HIGH || right_requested == HIGH) ? HIGH : LOW;
} else {
requested_gear = highgear ? HIGH : LOW;
}
const Gear shift_up =
constants::GetValues().clutch_transmission ? HIGH : SHIFTING_UP;
const Gear shift_down =
constants::GetValues().clutch_transmission ? LOW : SHIFTING_DOWN;
if (left_gear_ != requested_gear) {
if (IsInGear(left_gear_)) {
if (requested_gear == HIGH) {
left_gear_ = shift_up;
} else {
left_gear_ = shift_down;
}
} else {
if (requested_gear == HIGH && left_gear_ == SHIFTING_DOWN) {
left_gear_ = SHIFTING_UP;
} else if (requested_gear == LOW && left_gear_ == SHIFTING_UP) {
left_gear_ = SHIFTING_DOWN;
}
}
}
if (right_gear_ != requested_gear) {
if (IsInGear(right_gear_)) {
if (requested_gear == HIGH) {
right_gear_ = shift_up;
} else {
right_gear_ = shift_down;
}
} else {
if (requested_gear == HIGH && right_gear_ == SHIFTING_DOWN) {
right_gear_ = SHIFTING_UP;
} else if (requested_gear == LOW && right_gear_ == SHIFTING_UP) {
right_gear_ = SHIFTING_DOWN;
}
}
}
}
void SetPosition(const DrivetrainQueue::Position *position) {
const auto &values = constants::GetValues();
if (position == NULL) {
++stale_count_;
} else {
last_position_ = position_;
position_ = *position;
position_time_delta_ = (stale_count_ + 1) * 0.01;
stale_count_ = 0;
}
#if HAVE_SHIFTERS
if (position) {
GearLogging gear_logging;
// Switch to the correct controller.
const double left_middle_shifter_position =
(values.left_drive.clear_high + values.left_drive.clear_low) / 2.0;
const double right_middle_shifter_position =
(values.right_drive.clear_high + values.right_drive.clear_low) / 2.0;
if (position->left_shifter_position < left_middle_shifter_position ||
left_gear_ == LOW) {
if (position->right_shifter_position < right_middle_shifter_position ||
right_gear_ == LOW) {
gear_logging.left_loop_high = false;
gear_logging.right_loop_high = false;
loop_->set_controller_index(gear_logging.controller_index = 0);
} else {
gear_logging.left_loop_high = false;
gear_logging.right_loop_high = true;
loop_->set_controller_index(gear_logging.controller_index = 1);
}
} else {
if (position->right_shifter_position < right_middle_shifter_position ||
right_gear_ == LOW) {
gear_logging.left_loop_high = true;
gear_logging.right_loop_high = false;
loop_->set_controller_index(gear_logging.controller_index = 2);
} else {
gear_logging.left_loop_high = true;
gear_logging.right_loop_high = true;
loop_->set_controller_index(gear_logging.controller_index = 3);
}
}
// TODO(austin): Constants.
if (position->left_shifter_position > values.left_drive.clear_high && left_gear_ == SHIFTING_UP) {
left_gear_ = HIGH;
}
if (position->left_shifter_position < values.left_drive.clear_low && left_gear_ == SHIFTING_DOWN) {
left_gear_ = LOW;
}
if (position->right_shifter_position > values.right_drive.clear_high && right_gear_ == SHIFTING_UP) {
right_gear_ = HIGH;
}
if (position->right_shifter_position < values.right_drive.clear_low && right_gear_ == SHIFTING_DOWN) {
right_gear_ = LOW;
}
gear_logging.left_state = left_gear_;
gear_logging.right_state = right_gear_;
LOG_STRUCT(DEBUG, "state", gear_logging);
}
#else
(void) values;
#endif
}
double FilterVelocity(double throttle) {
const Eigen::Matrix<double, 2, 2> FF =
loop_->B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
constexpr int kHighGearController = 3;
const Eigen::Matrix<double, 2, 2> FF_high =
loop_->controller(kHighGearController).plant.B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() -
loop_->controller(kHighGearController).plant.A());
::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
int min_FF_sum_index;
const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
const double high_min_FF_sum = FF_high.col(0).sum();
const double adjusted_ff_voltage = ::aos::Clip(
throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
return (adjusted_ff_voltage +
ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) /
2.0) /
(ttrust_ * min_K_sum + min_FF_sum);
}
double MaxVelocity() {
const Eigen::Matrix<double, 2, 2> FF =
loop_->B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
constexpr int kHighGearController = 3;
const Eigen::Matrix<double, 2, 2> FF_high =
loop_->controller(kHighGearController).plant.B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() -
loop_->controller(kHighGearController).plant.A());
::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
int min_FF_sum_index;
const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
//const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
const double high_min_FF_sum = FF_high.col(0).sum();
const double adjusted_ff_voltage = ::aos::Clip(
12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
return adjusted_ff_voltage / min_FF_sum;
}
void Update() {
const auto &values = constants::GetValues();
// TODO(austin): Observer for the current velocity instead of difference
// calculations.
++counter_;
#if HAVE_SHIFTERS
const double current_left_velocity =
(position_.left_encoder - last_position_.left_encoder) /
position_time_delta_;
const double current_right_velocity =
(position_.right_encoder - last_position_.right_encoder) /
position_time_delta_;
const double left_motor_speed =
MotorSpeed(values.left_drive, position_.left_shifter_position,
current_left_velocity);
const double right_motor_speed =
MotorSpeed(values.right_drive, position_.right_shifter_position,
current_right_velocity);
{
CIMLogging logging;
// Reset the CIM model to the current conditions to be ready for when we
// shift.
if (IsInGear(left_gear_)) {
logging.left_in_gear = true;
} else {
logging.left_in_gear = false;
}
logging.left_motor_speed = left_motor_speed;
logging.left_velocity = current_left_velocity;
if (IsInGear(right_gear_)) {
logging.right_in_gear = true;
} else {
logging.right_in_gear = false;
}
logging.right_motor_speed = right_motor_speed;
logging.right_velocity = current_right_velocity;
LOG_STRUCT(DEBUG, "currently", logging);
}
#else
(void) values;
#endif
#if HAVE_SHIFTERS
if (IsInGear(left_gear_) && IsInGear(right_gear_)) {
#else
{
#endif
// FF * X = U (steady state)
const Eigen::Matrix<double, 2, 2> FF =
loop_->B().inverse() *
(Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
// Invert the plant to figure out how the velocity filter would have to
// work
// out in order to filter out the forwards negative inertia.
// This math assumes that the left and right power and velocity are
// equals,
// and that the plant is the same on the left and right.
const double fvel = FilterVelocity(throttle_);
const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0);
double steering_velocity;
if (quickturn_) {
steering_velocity = wheel_ * MaxVelocity();
} else {
steering_velocity = ::std::abs(fvel) * wheel_;
}
const double left_velocity = fvel - steering_velocity;
const double right_velocity = fvel + steering_velocity;
LOG(DEBUG, "l=%f r=%f\n", left_velocity, right_velocity);
// Integrate velocity to get the position.
// This position is used to get integral control.
loop_->mutable_R() << left_velocity, right_velocity;
if (!quickturn_) {
// K * R = w
Eigen::Matrix<double, 1, 2> equality_k;
equality_k << 1 + sign_svel, -(1 - sign_svel);
const double equality_w = 0.0;
// Construct a constraint on R by manipulating the constraint on U
::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>(
U_Poly_.H() * (loop_->K() + FF),
U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat());
// Limit R back inside the box.
loop_->mutable_R() =
CoerceGoal(R_poly, equality_k, equality_w, loop_->R());
}
const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R();
const Eigen::Matrix<double, 2, 1> U_ideal =
loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts;
for (int i = 0; i < 2; i++) {
loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12);
}
// TODO(austin): Model this better.
// TODO(austin): Feed back?
loop_->mutable_X_hat() =
loop_->A() * loop_->X_hat() + loop_->B() * loop_->U();
#if HAVE_SHIFTERS
} else {
// Any motor is not in gear. Speed match.
::Eigen::Matrix<double, 1, 1> R_left;
::Eigen::Matrix<double, 1, 1> R_right;
R_left(0, 0) = left_motor_speed;
R_right(0, 0) = right_motor_speed;
const double wiggle =
(static_cast<double>((counter_ % 20) / 10) - 0.5) * 5.0;
loop_->mutable_U(0, 0) = ::aos::Clip(
(R_left / Kv)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle),
-12.0, 12.0);
loop_->mutable_U(1, 0) = ::aos::Clip(
(R_right / Kv)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle),
-12.0, 12.0);
loop_->mutable_U() *= 12.0 / ::aos::robot_state->voltage_battery;
#endif
}
}
void SendMotors(DrivetrainQueue::Output *output) {
if (output != NULL) {
output->left_voltage = loop_->U(0, 0);
output->right_voltage = loop_->U(1, 0);
output->left_high = left_gear_ == HIGH || left_gear_ == SHIFTING_UP;
output->right_high = right_gear_ == HIGH || right_gear_ == SHIFTING_UP;
}
}
private:
const ::aos::controls::HPolytope<2> U_Poly_;
::std::unique_ptr<StateFeedbackLoop<2, 2, 2>> loop_;
const double ttrust_;
double wheel_;
double throttle_;
bool quickturn_;
int stale_count_;
double position_time_delta_;
Gear left_gear_;
Gear right_gear_;
DrivetrainQueue::Position last_position_;
DrivetrainQueue::Position position_;
int counter_;
};
constexpr double PolyDrivetrain::kStallTorque;
constexpr double PolyDrivetrain::kStallCurrent;
constexpr double PolyDrivetrain::kFreeSpeed;
constexpr double PolyDrivetrain::kFreeCurrent;
constexpr double PolyDrivetrain::J;
constexpr double PolyDrivetrain::m;
constexpr double PolyDrivetrain::rb;
constexpr double PolyDrivetrain::kWheelRadius;
constexpr double PolyDrivetrain::kR;
constexpr double PolyDrivetrain::Kv;
constexpr double PolyDrivetrain::Kt;
void DrivetrainLoop::RunIteration(const DrivetrainQueue::Goal *goal,
const DrivetrainQueue::Position *position,
DrivetrainQueue::Output *output,
DrivetrainQueue::Status * status) {
// TODO(aschuh): These should be members of the class.
static DrivetrainMotorsSS dt_closedloop;
static PolyDrivetrain dt_openloop;
bool bad_pos = false;
if (position == nullptr) {
LOG_INTERVAL(no_position_);
bad_pos = true;
}
no_position_.Print();
bool control_loop_driving = false;
if (goal) {
double wheel = goal->steering;
double throttle = goal->throttle;
bool quickturn = goal->quickturn;
#if HAVE_SHIFTERS
bool highgear = goal->highgear;
#endif
control_loop_driving = goal->control_loop_driving;
double left_goal = goal->left_goal;
double right_goal = goal->right_goal;
dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal, right_goal,
goal->right_velocity_goal);
#if HAVE_SHIFTERS
dt_openloop.SetGoal(wheel, throttle, quickturn, highgear);
#else
dt_openloop.SetGoal(wheel, throttle, quickturn, false);
#endif
}
if (!bad_pos) {
const double left_encoder = position->left_encoder;
const double right_encoder = position->right_encoder;
if (gyro_reading.FetchLatest()) {
LOG_STRUCT(DEBUG, "using", *gyro_reading.get());
dt_closedloop.SetPosition(left_encoder, right_encoder,
gyro_reading->angle);
} else {
dt_closedloop.SetRawPosition(left_encoder, right_encoder);
}
}
dt_openloop.SetPosition(position);
dt_openloop.Update();
if (control_loop_driving) {
dt_closedloop.Update(output == NULL, true);
dt_closedloop.SendMotors(output);
} else {
dt_openloop.SendMotors(output);
if (output) {
dt_closedloop.SetExternalMotors(output->left_voltage,
output->right_voltage);
}
dt_closedloop.Update(output == NULL, false);
}
// set the output status of the control loop state
if (status) {
status->robot_speed = dt_closedloop.GetEstimatedRobotSpeed();
status->filtered_left_position = dt_closedloop.GetEstimatedLeftEncoder();
status->filtered_right_position = dt_closedloop.GetEstimatedRightEncoder();
status->filtered_left_velocity = dt_closedloop.loop().X_hat(1, 0);
status->filtered_right_velocity = dt_closedloop.loop().X_hat(3, 0);
status->output_was_capped = dt_closedloop.OutputWasCapped();
status->uncapped_left_voltage = dt_closedloop.loop().U_uncapped(0, 0);
status->uncapped_right_voltage = dt_closedloop.loop().U_uncapped(1, 0);
}
}
} // namespace control_loops
} // namespace frc971