| #include "y2012/control_loops/drivetrain/drivetrain.h" |
| |
| #include <stdio.h> |
| #include <sched.h> |
| #include <cmath> |
| #include <memory> |
| #include "Eigen/Dense" |
| |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/logging/queue_logging.h" |
| #include "aos/common/logging/matrix_logging.h" |
| |
| #include "y2012/control_loops/drivetrain/drivetrain.q.h" |
| #include "y2012/control_loops/drivetrain/drivetrain_dog_motor_plant.h" |
| #include "y2012/control_loops/drivetrain/kalman_drivetrain_motor_plant.h" |
| #include "y2012/control_loops/drivetrain/polydrivetrain.h" |
| #include "y2012/control_loops/drivetrain/ssdrivetrain.h" |
| #include "frc971/queues/gyro.q.h" |
| |
| // A consistent way to mark code that goes away without shifters. It's still |
| // here because we will have shifters again in the future. |
| #define HAVE_SHIFTERS 1 |
| |
| using frc971::sensors::gyro_reading; |
| |
| namespace y2012 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| DrivetrainLoop::DrivetrainLoop( |
| ::y2012::control_loops::DrivetrainQueue *my_drivetrain) |
| : aos::controls::ControlLoop<::y2012::control_loops::DrivetrainQueue>( |
| my_drivetrain), |
| kf_(::y2012::control_loops::drivetrain::MakeKFDrivetrainLoop()) { |
| ::aos::controls::HPolytope<0>::Init(); |
| } |
| |
| void DrivetrainLoop::RunIteration( |
| const ::y2012::control_loops::DrivetrainQueue::Goal *goal, |
| const ::y2012::control_loops::DrivetrainQueue::Position *position, |
| ::y2012::control_loops::DrivetrainQueue::Output *output, |
| ::y2012::control_loops::DrivetrainQueue::Status *status) { |
| bool bad_pos = false; |
| if (position == nullptr) { |
| LOG_INTERVAL(no_position_); |
| bad_pos = true; |
| } |
| no_position_.Print(); |
| |
| bool control_loop_driving = false; |
| if (goal) { |
| double wheel = goal->steering; |
| double throttle = goal->throttle; |
| bool quickturn = goal->quickturn; |
| #if HAVE_SHIFTERS |
| bool highgear = goal->highgear; |
| #endif |
| |
| control_loop_driving = goal->control_loop_driving; |
| double left_goal = goal->left_goal; |
| double right_goal = goal->right_goal; |
| |
| dt_closedloop_.SetGoal(left_goal, goal->left_velocity_goal, right_goal, |
| goal->right_velocity_goal); |
| #if HAVE_SHIFTERS |
| dt_openloop_.SetGoal(wheel, throttle, quickturn, highgear); |
| #else |
| dt_openloop_.SetGoal(wheel, throttle, quickturn, false); |
| #endif |
| } |
| |
| if (!bad_pos) { |
| const double left_encoder = position->left_encoder; |
| const double right_encoder = position->right_encoder; |
| if (gyro_reading.FetchLatest()) { |
| LOG_STRUCT(DEBUG, "using", *gyro_reading.get()); |
| dt_closedloop_.SetPosition(left_encoder, right_encoder, |
| gyro_reading->angle); |
| last_gyro_heading_ = gyro_reading->angle; |
| last_gyro_rate_ = gyro_reading->velocity; |
| } else { |
| dt_closedloop_.SetRawPosition(left_encoder, right_encoder); |
| } |
| } |
| dt_openloop_.SetPosition(position); |
| dt_openloop_.Update(); |
| |
| if (control_loop_driving) { |
| dt_closedloop_.Update(output == NULL, true); |
| dt_closedloop_.SendMotors(output); |
| } else { |
| dt_openloop_.SendMotors(output); |
| if (output) { |
| dt_closedloop_.SetExternalMotors(output->left_voltage, |
| output->right_voltage); |
| } |
| dt_closedloop_.Update(output == NULL, false); |
| } |
| |
| // set the output status of the control loop state |
| if (status) { |
| status->robot_speed = dt_closedloop_.GetEstimatedRobotSpeed(); |
| status->filtered_left_position = dt_closedloop_.GetEstimatedLeftEncoder(); |
| status->filtered_right_position = dt_closedloop_.GetEstimatedRightEncoder(); |
| |
| status->filtered_left_velocity = dt_closedloop_.loop().X_hat(1, 0); |
| status->filtered_right_velocity = dt_closedloop_.loop().X_hat(3, 0); |
| status->output_was_capped = dt_closedloop_.OutputWasCapped(); |
| status->uncapped_left_voltage = dt_closedloop_.loop().U_uncapped(0, 0); |
| status->uncapped_right_voltage = dt_closedloop_.loop().U_uncapped(1, 0); |
| } |
| |
| |
| double left_voltage = 0.0; |
| double right_voltage = 0.0; |
| if (output) { |
| left_voltage = output->left_voltage; |
| right_voltage = output->right_voltage; |
| } |
| |
| const double scalar = ::aos::robot_state->voltage_battery / 12.0; |
| |
| left_voltage *= scalar; |
| right_voltage *= scalar; |
| |
| kf_.set_controller_index(dt_openloop_.controller_index()); |
| |
| Eigen::Matrix<double, 3, 1> Y; |
| Y << position->left_encoder, position->right_encoder, last_gyro_rate_; |
| kf_.Correct(Y); |
| integrated_kf_heading_ += |
| kDt * (kf_.X_hat(3, 0) - kf_.X_hat(1, 0)) / (kRobotRadius * 2.0); |
| |
| // To validate, look at the following: |
| |
| // Observed - dx/dt velocity for left, right. |
| |
| // Angular velocity error compared to the gyro |
| // Gyro heading vs left-right |
| // Voltage error. |
| |
| Eigen::Matrix<double, 2, 1> U; |
| U << last_left_voltage_, last_right_voltage_; |
| last_left_voltage_ = left_voltage; |
| last_right_voltage_ = right_voltage; |
| |
| kf_.UpdateObserver(U); |
| } |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace y2012 |