| #include "y2016/control_loops/superstructure/superstructure.h" |
| |
| #include "aos/common/controls/control_loops.q.h" |
| #include "aos/common/logging/logging.h" |
| |
| #include "y2016/control_loops/superstructure/integral_intake_plant.h" |
| #include "y2016/control_loops/superstructure/integral_arm_plant.h" |
| |
| #include "y2016/constants.h" |
| |
| namespace y2016 { |
| namespace control_loops { |
| namespace superstructure { |
| |
| namespace { |
| constexpr double kZeroingVoltage = 4.0; |
| |
| double UseUnlessZero(double target_value, double default_value) { |
| if (target_value != 0.0) { |
| return target_value; |
| } else { |
| return default_value; |
| } |
| } |
| |
| } // namespace |
| |
| void SimpleCappedStateFeedbackLoop::CapU() { |
| mutable_U(0, 0) = ::std::min(U(0, 0), max_voltage_); |
| mutable_U(0, 0) = ::std::max(U(0, 0), -max_voltage_); |
| } |
| |
| void DoubleCappedStateFeedbackLoop::CapU() { |
| mutable_U(0, 0) = ::std::min(U(0, 0), shoulder_max_voltage_); |
| mutable_U(0, 0) = ::std::max(U(0, 0), -shoulder_max_voltage_); |
| mutable_U(1, 0) = ::std::min(U(1, 0), wrist_max_voltage_); |
| mutable_U(1, 0) = ::std::max(U(1, 0), -wrist_max_voltage_); |
| } |
| |
| // Intake |
| Intake::Intake() |
| : loop_(new SimpleCappedStateFeedbackLoop(StateFeedbackLoop<3, 1, 1>( |
| ::y2016::control_loops::superstructure::MakeIntegralIntakeLoop()))), |
| estimator_(constants::GetValues().intake.zeroing), |
| profile_(::aos::controls::kLoopFrequency) { |
| Y_.setZero(); |
| unprofiled_goal_.setZero(); |
| offset_.setZero(); |
| AdjustProfile(0.0, 0.0); |
| } |
| |
| void Intake::UpdateIntakeOffset(double offset) { |
| const double doffset = offset - offset_(0, 0); |
| LOG(INFO, "Adjusting Intake offset from %f to %f\n", offset_(0, 0), offset); |
| |
| loop_->mutable_X_hat()(0, 0) += doffset; |
| Y_(0, 0) += doffset; |
| loop_->mutable_R(0, 0) += doffset; |
| |
| profile_.MoveGoal(doffset); |
| offset_(0, 0) = offset; |
| |
| CapGoal("R", &loop_->mutable_R()); |
| } |
| |
| |
| void Intake::Correct(PotAndIndexPosition position) { |
| estimator_.UpdateEstimate(position); |
| |
| if (!initialized_) { |
| if (estimator_.offset_ready()) { |
| UpdateIntakeOffset(estimator_.offset()); |
| initialized_ = true; |
| } |
| } |
| |
| Y_ << position.encoder; |
| Y_ += offset_; |
| loop_->Correct(Y_); |
| } |
| |
| void Intake::CapGoal(const char *name, Eigen::Matrix<double, 3, 1> *goal) { |
| const auto &values = constants::GetValues(); |
| |
| // Limit the goal to min/max allowable angles. |
| if ((*goal)(0, 0) >= values.intake.limits.upper) { |
| LOG(WARNING, "Intake goal %s above limit, %f > %f\n", name, (*goal)(0, 0), |
| values.intake.limits.upper); |
| (*goal)(0, 0) = values.intake.limits.upper; |
| } |
| if ((*goal)(0, 0) <= values.intake.limits.lower) { |
| LOG(WARNING, "Intake goal %s below limit, %f < %f\n", name, (*goal)(0, 0), |
| values.intake.limits.lower); |
| (*goal)(0, 0) = values.intake.limits.lower; |
| } |
| } |
| |
| void Intake::ForceGoal(double goal) { |
| set_unprofiled_goal(goal); |
| loop_->mutable_R() = unprofiled_goal_; |
| loop_->mutable_next_R() = loop_->R(); |
| |
| profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0)); |
| } |
| |
| void Intake::set_unprofiled_goal(double unprofiled_goal) { |
| unprofiled_goal_(0, 0) = unprofiled_goal; |
| unprofiled_goal_(1, 0) = 0.0; |
| unprofiled_goal_(2, 0) = 0.0; |
| CapGoal("unprofiled R", &unprofiled_goal_); |
| } |
| |
| void Intake::Update(bool disable) { |
| if (!disable) { |
| ::Eigen::Matrix<double, 2, 1> goal_state = |
| profile_.Update(unprofiled_goal_(0, 0), unprofiled_goal_(1, 0)); |
| |
| loop_->mutable_next_R(0, 0) = goal_state(0, 0); |
| loop_->mutable_next_R(1, 0) = goal_state(1, 0); |
| loop_->mutable_next_R(2, 0) = 0.0; |
| CapGoal("next R", &loop_->mutable_next_R()); |
| } |
| |
| loop_->Update(disable); |
| |
| if (!disable && loop_->U(0, 0) != loop_->U_uncapped(0, 0)) { |
| profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0)); |
| } |
| } |
| |
| bool Intake::CheckHardLimits() { |
| const auto &values = constants::GetValues(); |
| // Returns whether hard limits have been exceeded. |
| |
| if (angle() >= values.intake.limits.upper_hard || |
| angle() <= values.intake.limits.lower_hard) { |
| LOG(ERROR, "Intake at %f out of bounds [%f, %f], ESTOPing\n", angle(), |
| values.intake.limits.lower_hard, values.intake.limits.upper_hard); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void Intake::set_max_voltage(double voltage) { loop_->set_max_voltage(voltage); } |
| |
| void Intake::AdjustProfile(double max_angular_velocity, |
| double max_angular_acceleration) { |
| profile_.set_maximum_velocity(UseUnlessZero(max_angular_velocity, 10.0)); |
| profile_.set_maximum_acceleration(UseUnlessZero(max_angular_acceleration, 10.0)); |
| } |
| |
| void Intake::Reset() { |
| estimator_.Reset(); |
| initialized_ = false; |
| zeroed_ = false; |
| } |
| |
| EstimatorState Intake::IntakeEstimatorState() { |
| EstimatorState estimator_state; |
| ::frc971::zeroing::PopulateEstimatorState(estimator_, &estimator_state); |
| |
| return estimator_state; |
| } |
| |
| Arm::Arm() |
| : loop_(new DoubleCappedStateFeedbackLoop( |
| ::y2016::control_loops::superstructure::MakeIntegralArmLoop())), |
| shoulder_profile_(::aos::controls::kLoopFrequency), |
| wrist_profile_(::aos::controls::kLoopFrequency), |
| shoulder_estimator_(constants::GetValues().shoulder.zeroing), |
| wrist_estimator_(constants::GetValues().wrist.zeroing) { |
| Y_.setZero(); |
| offset_.setZero(); |
| unprofiled_goal_.setZero(); |
| AdjustProfile(0.0, 0.0, 0.0, 0.0); |
| } |
| |
| void Arm::UpdateWristOffset(double offset) { |
| const double doffset = offset - offset_(1, 0); |
| LOG(INFO, "Adjusting Wrist offset from %f to %f\n", offset_(1, 0), offset); |
| |
| loop_->mutable_X_hat()(2, 0) += doffset; |
| Y_(1, 0) += doffset; |
| loop_->mutable_R(2, 0) += doffset; |
| loop_->mutable_next_R(2, 0) += doffset; |
| unprofiled_goal_(2, 0) += doffset; |
| |
| wrist_profile_.MoveGoal(doffset); |
| offset_(1, 0) = offset; |
| |
| CapGoal("R", &loop_->mutable_R()); |
| CapGoal("unprofiled R", &loop_->mutable_next_R()); |
| } |
| |
| void Arm::UpdateShoulderOffset(double offset) { |
| const double doffset = offset - offset_(0, 0); |
| LOG(INFO, "Adjusting Shoulder offset from %f to %f\n", offset_(0, 0), |
| offset); |
| |
| loop_->mutable_X_hat()(0, 0) += doffset; |
| loop_->mutable_X_hat()(2, 0) += doffset; |
| Y_(0, 0) += doffset; |
| loop_->mutable_R(0, 0) += doffset; |
| loop_->mutable_R(2, 0) += doffset; |
| loop_->mutable_next_R(0, 0) += doffset; |
| loop_->mutable_next_R(2, 0) += doffset; |
| unprofiled_goal_(0, 0) += doffset; |
| unprofiled_goal_(2, 0) += doffset; |
| |
| shoulder_profile_.MoveGoal(doffset); |
| wrist_profile_.MoveGoal(doffset); |
| offset_(0, 0) = offset; |
| |
| CapGoal("R", &loop_->mutable_R()); |
| CapGoal("unprofiled R", &loop_->mutable_next_R()); |
| } |
| |
| // TODO(austin): Handle zeroing errors. |
| |
| void Arm::Correct(PotAndIndexPosition position_shoulder, |
| PotAndIndexPosition position_wrist) { |
| shoulder_estimator_.UpdateEstimate(position_shoulder); |
| wrist_estimator_.UpdateEstimate(position_wrist); |
| |
| if (!initialized_) { |
| if (shoulder_estimator_.offset_ready() && wrist_estimator_.offset_ready()) { |
| UpdateShoulderOffset(shoulder_estimator_.offset()); |
| UpdateWristOffset(wrist_estimator_.offset()); |
| initialized_ = true; |
| } |
| } |
| |
| if (!shoulder_zeroed_ && shoulder_estimator_.zeroed()) { |
| UpdateShoulderOffset(shoulder_estimator_.offset()); |
| shoulder_zeroed_ = true; |
| } |
| if (!wrist_zeroed_ && wrist_estimator_.zeroed()) { |
| UpdateWristOffset(wrist_estimator_.offset()); |
| wrist_zeroed_ = true; |
| } |
| |
| { |
| Y_ << position_shoulder.encoder, position_wrist.encoder; |
| Y_ += offset_; |
| loop_->Correct(Y_); |
| } |
| } |
| |
| void Arm::CapGoal(const char *name, Eigen::Matrix<double, 6, 1> *goal) { |
| // Limit the goals to min/max allowable angles. |
| const auto &values = constants::GetValues(); |
| |
| if ((*goal)(0, 0) >= values.shoulder.limits.upper) { |
| LOG(WARNING, "Shoulder goal %s above limit, %f > %f\n", name, (*goal)(0, 0), |
| values.shoulder.limits.upper); |
| (*goal)(0, 0) = values.shoulder.limits.upper; |
| } |
| if ((*goal)(0, 0) <= values.shoulder.limits.lower) { |
| LOG(WARNING, "Shoulder goal %s below limit, %f < %f\n", name, (*goal)(0, 0), |
| values.shoulder.limits.lower); |
| (*goal)(0, 0) = values.shoulder.limits.lower; |
| } |
| |
| const double wrist_goal_angle_ungrounded = (*goal)(2, 0) - (*goal)(0, 0); |
| |
| if (wrist_goal_angle_ungrounded >= values.wrist.limits.upper) { |
| LOG(WARNING, "Wrist goal %s above limit, %f > %f\n", name, |
| wrist_goal_angle_ungrounded, values.wrist.limits.upper); |
| (*goal)(2, 0) = values.wrist.limits.upper + (*goal)(0, 0); |
| } |
| if (wrist_goal_angle_ungrounded <= values.wrist.limits.lower) { |
| LOG(WARNING, "Wrist goal %s below limit, %f < %f\n", name, |
| wrist_goal_angle_ungrounded, values.wrist.limits.lower); |
| (*goal)(2, 0) = values.wrist.limits.lower + (*goal)(0, 0); |
| } |
| } |
| |
| void Arm::ForceGoal(double goal_shoulder, double goal_wrist) { |
| set_unprofiled_goal(goal_shoulder, goal_wrist); |
| loop_->mutable_R() = unprofiled_goal_; |
| loop_->mutable_next_R() = loop_->R(); |
| |
| shoulder_profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0)); |
| wrist_profile_.MoveCurrentState(loop_->R().block<2, 1>(2, 0)); |
| } |
| |
| void Arm::set_unprofiled_goal(double unprofiled_goal_shoulder, |
| double unprofiled_goal_wrist) { |
| unprofiled_goal_ << unprofiled_goal_shoulder, 0.0, unprofiled_goal_wrist, 0.0, |
| 0.0, 0.0; |
| CapGoal("unprofiled R", &unprofiled_goal_); |
| } |
| |
| void Arm::AdjustProfile(double max_angular_velocity_shoulder, |
| double max_angular_acceleration_shoulder, |
| double max_angular_velocity_wrist, |
| double max_angular_acceleration_wrist) { |
| shoulder_profile_.set_maximum_velocity( |
| UseUnlessZero(max_angular_velocity_shoulder, 10.0)); |
| shoulder_profile_.set_maximum_acceleration( |
| UseUnlessZero(max_angular_acceleration_shoulder, 10.0)); |
| wrist_profile_.set_maximum_velocity( |
| UseUnlessZero(max_angular_velocity_wrist, 10.0)); |
| wrist_profile_.set_maximum_acceleration( |
| UseUnlessZero(max_angular_acceleration_wrist, 10.0)); |
| } |
| |
| bool Arm::CheckHardLimits() { |
| const auto &values = constants::GetValues(); |
| if (shoulder_angle() >= values.shoulder.limits.upper_hard || |
| shoulder_angle() <= values.shoulder.limits.lower_hard) { |
| LOG(ERROR, "Shoulder at %f out of bounds [%f, %f], ESTOPing\n", |
| shoulder_angle(), values.shoulder.limits.lower_hard, |
| values.shoulder.limits.upper_hard); |
| return true; |
| } |
| |
| if (wrist_angle() - shoulder_angle() >= values.wrist.limits.upper_hard || |
| wrist_angle() - shoulder_angle() <= values.wrist.limits.lower_hard) { |
| LOG(ERROR, "Wrist at %f out of bounds [%f, %f], ESTOPing\n", |
| wrist_angle() - shoulder_angle(), values.wrist.limits.lower_hard, |
| values.wrist.limits.upper_hard); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void Arm::Update(bool disable) { |
| if (!disable) { |
| // Compute next goal. |
| ::Eigen::Matrix<double, 2, 1> goal_state_shoulder = |
| shoulder_profile_.Update(unprofiled_goal_(0, 0), |
| unprofiled_goal_(1, 0)); |
| loop_->mutable_next_R(0, 0) = goal_state_shoulder(0, 0); |
| loop_->mutable_next_R(1, 0) = goal_state_shoulder(1, 0); |
| |
| ::Eigen::Matrix<double, 2, 1> goal_state_wrist = |
| wrist_profile_.Update(unprofiled_goal_(2, 0), unprofiled_goal_(3, 0)); |
| loop_->mutable_next_R(2, 0) = goal_state_wrist(0, 0); |
| loop_->mutable_next_R(3, 0) = goal_state_wrist(1, 0); |
| |
| loop_->mutable_next_R(4, 0) = unprofiled_goal_(4, 0); |
| loop_->mutable_next_R(5, 0) = unprofiled_goal_(5, 0); |
| CapGoal("next R", &loop_->mutable_next_R()); |
| } |
| |
| // Move loop |
| loop_->Update(disable); |
| |
| // Shoulder saturated |
| if (!disable && loop_->U(0, 0) != loop_->U_uncapped(0, 0)) { |
| shoulder_profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0)); |
| } |
| |
| // Wrist saturated |
| if (!disable && loop_->U(1, 0) != loop_->U_uncapped(1, 0)) { |
| wrist_profile_.MoveCurrentState(loop_->R().block<2, 1>(2, 0)); |
| } |
| } |
| |
| void Arm::set_max_voltage(double shoulder_max_voltage, |
| double wrist_max_voltage) { |
| loop_->set_max_voltage(shoulder_max_voltage, wrist_max_voltage); |
| } |
| |
| void Arm::Reset() { |
| shoulder_estimator_.Reset(); |
| wrist_estimator_.Reset(); |
| initialized_ = false; |
| shoulder_zeroed_ = false; |
| wrist_zeroed_ = false; |
| } |
| |
| EstimatorState Arm::ShoulderEstimatorState() { |
| EstimatorState estimator_state; |
| ::frc971::zeroing::PopulateEstimatorState(shoulder_estimator_, |
| &estimator_state); |
| |
| return estimator_state; |
| } |
| |
| EstimatorState Arm::WristEstimatorState() { |
| EstimatorState estimator_state; |
| ::frc971::zeroing::PopulateEstimatorState(wrist_estimator_, &estimator_state); |
| |
| return estimator_state; |
| } |
| |
| // ///// Superstructure ///// |
| Superstructure::Superstructure( |
| control_loops::SuperstructureQueue *superstructure_queue) |
| : aos::controls::ControlLoop<control_loops::SuperstructureQueue>( |
| superstructure_queue) {} |
| |
| void Superstructure::UpdateZeroingState() { |
| // TODO(austin): Explicit state transitions instead of this. |
| // TODO(adam): Change this once we have zeroing written. |
| if (!arm_.initialized() || !intake_.initialized()) { |
| state_ = INITIALIZING; |
| } else if (!intake_.zeroed()) { |
| state_ = ZEROING_INTAKE; |
| } else if (!arm_.zeroed()) { |
| state_ = ZEROING_ARM; |
| } else { |
| state_ = RUNNING; |
| } |
| } |
| |
| void Superstructure::RunIteration( |
| const control_loops::SuperstructureQueue::Goal *unsafe_goal, |
| const control_loops::SuperstructureQueue::Position *position, |
| control_loops::SuperstructureQueue::Output *output, |
| control_loops::SuperstructureQueue::Status *status) { |
| if (WasReset()) { |
| LOG(ERROR, "WPILib reset, restarting\n"); |
| arm_.Reset(); |
| intake_.Reset(); |
| state_ = UNINITIALIZED; |
| } |
| |
| // Bool to track if we should turn the motors on or not. |
| bool disable = output == nullptr; |
| |
| arm_.Correct(position->shoulder, position->wrist); |
| intake_.Correct(position->intake); |
| |
| // Zeroing will work as follows: |
| // Start with the intake. Move it towards the center. Once zeroed, move it |
| // back to the bottom. Rotate the shoulder towards the center. Once zeroed, |
| // move it up enough to rotate the wrist towards the center. |
| |
| // We'll then need code to do sanity checking on values. |
| |
| switch (state_) { |
| case UNINITIALIZED: |
| LOG(DEBUG, "Uninitialized\n"); |
| state_ = INITIALIZING; |
| disable = true; |
| break; |
| |
| case INITIALIZING: |
| LOG(DEBUG, "Waiting for accurate initial position.\n"); |
| disable = true; |
| // Update state_ to accurately represent the state of the zeroing |
| // estimators. |
| UpdateZeroingState(); |
| if (state_ != INITIALIZING) { |
| // Set the goals to where we are now. |
| intake_.ForceGoal(intake_.angle()); |
| arm_.ForceGoal(arm_.shoulder_angle(), arm_.wrist_angle()); |
| } |
| break; |
| |
| case ZEROING_INTAKE: |
| case ZEROING_ARM: |
| // TODO(adam): Add your magic here. |
| state_ = RUNNING; |
| break; |
| |
| case RUNNING: |
| if (unsafe_goal) { |
| arm_.AdjustProfile(unsafe_goal->max_angular_velocity_shoulder, |
| unsafe_goal->max_angular_acceleration_shoulder, |
| unsafe_goal->max_angular_velocity_wrist, |
| unsafe_goal->max_angular_acceleration_wrist); |
| intake_.AdjustProfile(unsafe_goal->max_angular_velocity_wrist, |
| unsafe_goal->max_angular_acceleration_intake); |
| |
| arm_.set_unprofiled_goal(unsafe_goal->angle_shoulder, |
| unsafe_goal->angle_wrist); |
| intake_.set_unprofiled_goal(unsafe_goal->angle_intake); |
| } |
| |
| // Update state_ to accurately represent the state of the zeroing |
| // estimators. |
| |
| if (state_ != RUNNING && state_ != ESTOP) { |
| state_ = UNINITIALIZED; |
| } |
| break; |
| |
| case ESTOP: |
| LOG(ERROR, "Estop\n"); |
| disable = true; |
| break; |
| } |
| |
| // ESTOP if we hit any of the limits. It is safe(ish) to hit the limits while |
| // zeroing since we use such low power. |
| if (state_ == RUNNING) { |
| // ESTOP if we hit the hard limits. |
| if ((arm_.CheckHardLimits() || intake_.CheckHardLimits()) && output) { |
| state_ = ESTOP; |
| } |
| } |
| |
| // Set the voltage limits. |
| const double max_voltage = state_ == RUNNING ? 12.0 : kZeroingVoltage; |
| arm_.set_max_voltage(max_voltage, max_voltage); |
| intake_.set_max_voltage(max_voltage); |
| |
| // Calculate the loops for a cycle. |
| arm_.Update(disable); |
| intake_.Update(disable); |
| |
| // Write out all the voltages. |
| if (output) { |
| output->voltage_intake = intake_.intake_voltage(); |
| output->voltage_shoulder = arm_.shoulder_voltage(); |
| output->voltage_wrist = arm_.wrist_voltage(); |
| } |
| |
| // Save debug/internal state. |
| // TODO(austin): Save the voltage errors. |
| status->zeroed = state_ == RUNNING; |
| |
| status->shoulder.angle = arm_.X_hat(0, 0); |
| status->shoulder.angular_velocity = arm_.X_hat(1, 0); |
| status->shoulder.goal_angle = arm_.goal(0, 0); |
| status->shoulder.goal_angular_velocity = arm_.goal(1, 0); |
| status->shoulder.unprofiled_goal_angle = arm_.unprofiled_goal(0, 0); |
| status->shoulder.unprofiled_goal_angular_velocity = |
| arm_.unprofiled_goal(1, 0); |
| status->shoulder.estimator_state = arm_.ShoulderEstimatorState(); |
| |
| status->wrist.angle = arm_.X_hat(2, 0); |
| status->wrist.angular_velocity = arm_.X_hat(3, 0); |
| status->wrist.goal_angle = arm_.goal(2, 0); |
| status->wrist.goal_angular_velocity = arm_.goal(3, 0); |
| status->wrist.unprofiled_goal_angle = arm_.unprofiled_goal(2, 0); |
| status->wrist.unprofiled_goal_angular_velocity = arm_.unprofiled_goal(3, 0); |
| status->wrist.estimator_state = arm_.WristEstimatorState(); |
| |
| status->intake.angle = intake_.X_hat(0, 0); |
| status->intake.angular_velocity = intake_.X_hat(1, 0); |
| status->intake.goal_angle = intake_.goal(0, 0); |
| status->intake.goal_angular_velocity = intake_.goal(1, 0); |
| status->intake.unprofiled_goal_angle = intake_.unprofiled_goal(0, 0); |
| status->intake.unprofiled_goal_angular_velocity = |
| intake_.unprofiled_goal(1, 0); |
| status->intake.estimator_state = intake_.IntakeEstimatorState(); |
| |
| status->estopped = (state_ == ESTOP); |
| |
| status->state = state_; |
| |
| last_state_ = state_; |
| } |
| |
| } // namespace superstructure |
| } // namespace control_loops |
| } // namespace y2016 |