blob: 2095d6ce55efa3dc51bad75ff4aa012f4464a1c3 [file] [log] [blame]
#include "y2016/control_loops/superstructure/superstructure.h"
#include "aos/common/controls/control_loops.q.h"
#include "aos/common/logging/logging.h"
#include "y2016/control_loops/superstructure/integral_intake_plant.h"
#include "y2016/control_loops/superstructure/integral_arm_plant.h"
#include "y2016/constants.h"
namespace y2016 {
namespace control_loops {
namespace superstructure {
namespace {
constexpr double kZeroingVoltage = 4.0;
double UseUnlessZero(double target_value, double default_value) {
if (target_value != 0.0) {
return target_value;
} else {
return default_value;
}
}
} // namespace
void SimpleCappedStateFeedbackLoop::CapU() {
mutable_U(0, 0) = ::std::min(U(0, 0), max_voltage_);
mutable_U(0, 0) = ::std::max(U(0, 0), -max_voltage_);
}
void DoubleCappedStateFeedbackLoop::CapU() {
mutable_U(0, 0) = ::std::min(U(0, 0), shoulder_max_voltage_);
mutable_U(0, 0) = ::std::max(U(0, 0), -shoulder_max_voltage_);
mutable_U(1, 0) = ::std::min(U(1, 0), wrist_max_voltage_);
mutable_U(1, 0) = ::std::max(U(1, 0), -wrist_max_voltage_);
}
// Intake
Intake::Intake()
: loop_(new SimpleCappedStateFeedbackLoop(StateFeedbackLoop<3, 1, 1>(
::y2016::control_loops::superstructure::MakeIntegralIntakeLoop()))),
estimator_(constants::GetValues().intake.zeroing),
profile_(::aos::controls::kLoopFrequency) {
Y_.setZero();
unprofiled_goal_.setZero();
offset_.setZero();
AdjustProfile(0.0, 0.0);
}
void Intake::UpdateIntakeOffset(double offset) {
const double doffset = offset - offset_(0, 0);
LOG(INFO, "Adjusting Intake offset from %f to %f\n", offset_(0, 0), offset);
loop_->mutable_X_hat()(0, 0) += doffset;
Y_(0, 0) += doffset;
loop_->mutable_R(0, 0) += doffset;
profile_.MoveGoal(doffset);
offset_(0, 0) = offset;
CapGoal("R", &loop_->mutable_R());
}
void Intake::Correct(PotAndIndexPosition position) {
estimator_.UpdateEstimate(position);
if (!initialized_) {
if (estimator_.offset_ready()) {
UpdateIntakeOffset(estimator_.offset());
initialized_ = true;
}
}
Y_ << position.encoder;
Y_ += offset_;
loop_->Correct(Y_);
}
void Intake::CapGoal(const char *name, Eigen::Matrix<double, 3, 1> *goal) {
const auto &values = constants::GetValues();
// Limit the goal to min/max allowable angles.
if ((*goal)(0, 0) >= values.intake.limits.upper) {
LOG(WARNING, "Intake goal %s above limit, %f > %f\n", name, (*goal)(0, 0),
values.intake.limits.upper);
(*goal)(0, 0) = values.intake.limits.upper;
}
if ((*goal)(0, 0) <= values.intake.limits.lower) {
LOG(WARNING, "Intake goal %s below limit, %f < %f\n", name, (*goal)(0, 0),
values.intake.limits.lower);
(*goal)(0, 0) = values.intake.limits.lower;
}
}
void Intake::ForceGoal(double goal) {
set_unprofiled_goal(goal);
loop_->mutable_R() = unprofiled_goal_;
loop_->mutable_next_R() = loop_->R();
profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
}
void Intake::set_unprofiled_goal(double unprofiled_goal) {
unprofiled_goal_(0, 0) = unprofiled_goal;
unprofiled_goal_(1, 0) = 0.0;
unprofiled_goal_(2, 0) = 0.0;
CapGoal("unprofiled R", &unprofiled_goal_);
}
void Intake::Update(bool disable) {
if (!disable) {
::Eigen::Matrix<double, 2, 1> goal_state =
profile_.Update(unprofiled_goal_(0, 0), unprofiled_goal_(1, 0));
loop_->mutable_next_R(0, 0) = goal_state(0, 0);
loop_->mutable_next_R(1, 0) = goal_state(1, 0);
loop_->mutable_next_R(2, 0) = 0.0;
CapGoal("next R", &loop_->mutable_next_R());
}
loop_->Update(disable);
if (!disable && loop_->U(0, 0) != loop_->U_uncapped(0, 0)) {
profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
}
}
bool Intake::CheckHardLimits() {
const auto &values = constants::GetValues();
// Returns whether hard limits have been exceeded.
if (angle() >= values.intake.limits.upper_hard ||
angle() <= values.intake.limits.lower_hard) {
LOG(ERROR, "Intake at %f out of bounds [%f, %f], ESTOPing\n", angle(),
values.intake.limits.lower_hard, values.intake.limits.upper_hard);
return true;
}
return false;
}
void Intake::set_max_voltage(double voltage) { loop_->set_max_voltage(voltage); }
void Intake::AdjustProfile(double max_angular_velocity,
double max_angular_acceleration) {
profile_.set_maximum_velocity(UseUnlessZero(max_angular_velocity, 10.0));
profile_.set_maximum_acceleration(UseUnlessZero(max_angular_acceleration, 10.0));
}
void Intake::Reset() {
estimator_.Reset();
initialized_ = false;
zeroed_ = false;
}
EstimatorState Intake::IntakeEstimatorState() {
EstimatorState estimator_state;
::frc971::zeroing::PopulateEstimatorState(estimator_, &estimator_state);
return estimator_state;
}
Arm::Arm()
: loop_(new DoubleCappedStateFeedbackLoop(
::y2016::control_loops::superstructure::MakeIntegralArmLoop())),
shoulder_profile_(::aos::controls::kLoopFrequency),
wrist_profile_(::aos::controls::kLoopFrequency),
shoulder_estimator_(constants::GetValues().shoulder.zeroing),
wrist_estimator_(constants::GetValues().wrist.zeroing) {
Y_.setZero();
offset_.setZero();
unprofiled_goal_.setZero();
AdjustProfile(0.0, 0.0, 0.0, 0.0);
}
void Arm::UpdateWristOffset(double offset) {
const double doffset = offset - offset_(1, 0);
LOG(INFO, "Adjusting Wrist offset from %f to %f\n", offset_(1, 0), offset);
loop_->mutable_X_hat()(2, 0) += doffset;
Y_(1, 0) += doffset;
loop_->mutable_R(2, 0) += doffset;
loop_->mutable_next_R(2, 0) += doffset;
unprofiled_goal_(2, 0) += doffset;
wrist_profile_.MoveGoal(doffset);
offset_(1, 0) = offset;
CapGoal("R", &loop_->mutable_R());
CapGoal("unprofiled R", &loop_->mutable_next_R());
}
void Arm::UpdateShoulderOffset(double offset) {
const double doffset = offset - offset_(0, 0);
LOG(INFO, "Adjusting Shoulder offset from %f to %f\n", offset_(0, 0),
offset);
loop_->mutable_X_hat()(0, 0) += doffset;
loop_->mutable_X_hat()(2, 0) += doffset;
Y_(0, 0) += doffset;
loop_->mutable_R(0, 0) += doffset;
loop_->mutable_R(2, 0) += doffset;
loop_->mutable_next_R(0, 0) += doffset;
loop_->mutable_next_R(2, 0) += doffset;
unprofiled_goal_(0, 0) += doffset;
unprofiled_goal_(2, 0) += doffset;
shoulder_profile_.MoveGoal(doffset);
wrist_profile_.MoveGoal(doffset);
offset_(0, 0) = offset;
CapGoal("R", &loop_->mutable_R());
CapGoal("unprofiled R", &loop_->mutable_next_R());
}
// TODO(austin): Handle zeroing errors.
void Arm::Correct(PotAndIndexPosition position_shoulder,
PotAndIndexPosition position_wrist) {
shoulder_estimator_.UpdateEstimate(position_shoulder);
wrist_estimator_.UpdateEstimate(position_wrist);
if (!initialized_) {
if (shoulder_estimator_.offset_ready() && wrist_estimator_.offset_ready()) {
UpdateShoulderOffset(shoulder_estimator_.offset());
UpdateWristOffset(wrist_estimator_.offset());
initialized_ = true;
}
}
if (!shoulder_zeroed_ && shoulder_estimator_.zeroed()) {
UpdateShoulderOffset(shoulder_estimator_.offset());
shoulder_zeroed_ = true;
}
if (!wrist_zeroed_ && wrist_estimator_.zeroed()) {
UpdateWristOffset(wrist_estimator_.offset());
wrist_zeroed_ = true;
}
{
Y_ << position_shoulder.encoder, position_wrist.encoder;
Y_ += offset_;
loop_->Correct(Y_);
}
}
void Arm::CapGoal(const char *name, Eigen::Matrix<double, 6, 1> *goal) {
// Limit the goals to min/max allowable angles.
const auto &values = constants::GetValues();
if ((*goal)(0, 0) >= values.shoulder.limits.upper) {
LOG(WARNING, "Shoulder goal %s above limit, %f > %f\n", name, (*goal)(0, 0),
values.shoulder.limits.upper);
(*goal)(0, 0) = values.shoulder.limits.upper;
}
if ((*goal)(0, 0) <= values.shoulder.limits.lower) {
LOG(WARNING, "Shoulder goal %s below limit, %f < %f\n", name, (*goal)(0, 0),
values.shoulder.limits.lower);
(*goal)(0, 0) = values.shoulder.limits.lower;
}
const double wrist_goal_angle_ungrounded = (*goal)(2, 0) - (*goal)(0, 0);
if (wrist_goal_angle_ungrounded >= values.wrist.limits.upper) {
LOG(WARNING, "Wrist goal %s above limit, %f > %f\n", name,
wrist_goal_angle_ungrounded, values.wrist.limits.upper);
(*goal)(2, 0) = values.wrist.limits.upper + (*goal)(0, 0);
}
if (wrist_goal_angle_ungrounded <= values.wrist.limits.lower) {
LOG(WARNING, "Wrist goal %s below limit, %f < %f\n", name,
wrist_goal_angle_ungrounded, values.wrist.limits.lower);
(*goal)(2, 0) = values.wrist.limits.lower + (*goal)(0, 0);
}
}
void Arm::ForceGoal(double goal_shoulder, double goal_wrist) {
set_unprofiled_goal(goal_shoulder, goal_wrist);
loop_->mutable_R() = unprofiled_goal_;
loop_->mutable_next_R() = loop_->R();
shoulder_profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
wrist_profile_.MoveCurrentState(loop_->R().block<2, 1>(2, 0));
}
void Arm::set_unprofiled_goal(double unprofiled_goal_shoulder,
double unprofiled_goal_wrist) {
unprofiled_goal_ << unprofiled_goal_shoulder, 0.0, unprofiled_goal_wrist, 0.0,
0.0, 0.0;
CapGoal("unprofiled R", &unprofiled_goal_);
}
void Arm::AdjustProfile(double max_angular_velocity_shoulder,
double max_angular_acceleration_shoulder,
double max_angular_velocity_wrist,
double max_angular_acceleration_wrist) {
shoulder_profile_.set_maximum_velocity(
UseUnlessZero(max_angular_velocity_shoulder, 10.0));
shoulder_profile_.set_maximum_acceleration(
UseUnlessZero(max_angular_acceleration_shoulder, 10.0));
wrist_profile_.set_maximum_velocity(
UseUnlessZero(max_angular_velocity_wrist, 10.0));
wrist_profile_.set_maximum_acceleration(
UseUnlessZero(max_angular_acceleration_wrist, 10.0));
}
bool Arm::CheckHardLimits() {
const auto &values = constants::GetValues();
if (shoulder_angle() >= values.shoulder.limits.upper_hard ||
shoulder_angle() <= values.shoulder.limits.lower_hard) {
LOG(ERROR, "Shoulder at %f out of bounds [%f, %f], ESTOPing\n",
shoulder_angle(), values.shoulder.limits.lower_hard,
values.shoulder.limits.upper_hard);
return true;
}
if (wrist_angle() - shoulder_angle() >= values.wrist.limits.upper_hard ||
wrist_angle() - shoulder_angle() <= values.wrist.limits.lower_hard) {
LOG(ERROR, "Wrist at %f out of bounds [%f, %f], ESTOPing\n",
wrist_angle() - shoulder_angle(), values.wrist.limits.lower_hard,
values.wrist.limits.upper_hard);
return true;
}
return false;
}
void Arm::Update(bool disable) {
if (!disable) {
// Compute next goal.
::Eigen::Matrix<double, 2, 1> goal_state_shoulder =
shoulder_profile_.Update(unprofiled_goal_(0, 0),
unprofiled_goal_(1, 0));
loop_->mutable_next_R(0, 0) = goal_state_shoulder(0, 0);
loop_->mutable_next_R(1, 0) = goal_state_shoulder(1, 0);
::Eigen::Matrix<double, 2, 1> goal_state_wrist =
wrist_profile_.Update(unprofiled_goal_(2, 0), unprofiled_goal_(3, 0));
loop_->mutable_next_R(2, 0) = goal_state_wrist(0, 0);
loop_->mutable_next_R(3, 0) = goal_state_wrist(1, 0);
loop_->mutable_next_R(4, 0) = unprofiled_goal_(4, 0);
loop_->mutable_next_R(5, 0) = unprofiled_goal_(5, 0);
CapGoal("next R", &loop_->mutable_next_R());
}
// Move loop
loop_->Update(disable);
// Shoulder saturated
if (!disable && loop_->U(0, 0) != loop_->U_uncapped(0, 0)) {
shoulder_profile_.MoveCurrentState(loop_->R().block<2, 1>(0, 0));
}
// Wrist saturated
if (!disable && loop_->U(1, 0) != loop_->U_uncapped(1, 0)) {
wrist_profile_.MoveCurrentState(loop_->R().block<2, 1>(2, 0));
}
}
void Arm::set_max_voltage(double shoulder_max_voltage,
double wrist_max_voltage) {
loop_->set_max_voltage(shoulder_max_voltage, wrist_max_voltage);
}
void Arm::Reset() {
shoulder_estimator_.Reset();
wrist_estimator_.Reset();
initialized_ = false;
shoulder_zeroed_ = false;
wrist_zeroed_ = false;
}
EstimatorState Arm::ShoulderEstimatorState() {
EstimatorState estimator_state;
::frc971::zeroing::PopulateEstimatorState(shoulder_estimator_,
&estimator_state);
return estimator_state;
}
EstimatorState Arm::WristEstimatorState() {
EstimatorState estimator_state;
::frc971::zeroing::PopulateEstimatorState(wrist_estimator_, &estimator_state);
return estimator_state;
}
// ///// Superstructure /////
Superstructure::Superstructure(
control_loops::SuperstructureQueue *superstructure_queue)
: aos::controls::ControlLoop<control_loops::SuperstructureQueue>(
superstructure_queue) {}
void Superstructure::UpdateZeroingState() {
// TODO(austin): Explicit state transitions instead of this.
// TODO(adam): Change this once we have zeroing written.
if (!arm_.initialized() || !intake_.initialized()) {
state_ = INITIALIZING;
} else if (!intake_.zeroed()) {
state_ = ZEROING_INTAKE;
} else if (!arm_.zeroed()) {
state_ = ZEROING_ARM;
} else {
state_ = RUNNING;
}
}
void Superstructure::RunIteration(
const control_loops::SuperstructureQueue::Goal *unsafe_goal,
const control_loops::SuperstructureQueue::Position *position,
control_loops::SuperstructureQueue::Output *output,
control_loops::SuperstructureQueue::Status *status) {
if (WasReset()) {
LOG(ERROR, "WPILib reset, restarting\n");
arm_.Reset();
intake_.Reset();
state_ = UNINITIALIZED;
}
// Bool to track if we should turn the motors on or not.
bool disable = output == nullptr;
arm_.Correct(position->shoulder, position->wrist);
intake_.Correct(position->intake);
// Zeroing will work as follows:
// Start with the intake. Move it towards the center. Once zeroed, move it
// back to the bottom. Rotate the shoulder towards the center. Once zeroed,
// move it up enough to rotate the wrist towards the center.
// We'll then need code to do sanity checking on values.
switch (state_) {
case UNINITIALIZED:
LOG(DEBUG, "Uninitialized\n");
state_ = INITIALIZING;
disable = true;
break;
case INITIALIZING:
LOG(DEBUG, "Waiting for accurate initial position.\n");
disable = true;
// Update state_ to accurately represent the state of the zeroing
// estimators.
UpdateZeroingState();
if (state_ != INITIALIZING) {
// Set the goals to where we are now.
intake_.ForceGoal(intake_.angle());
arm_.ForceGoal(arm_.shoulder_angle(), arm_.wrist_angle());
}
break;
case ZEROING_INTAKE:
case ZEROING_ARM:
// TODO(adam): Add your magic here.
state_ = RUNNING;
break;
case RUNNING:
if (unsafe_goal) {
arm_.AdjustProfile(unsafe_goal->max_angular_velocity_shoulder,
unsafe_goal->max_angular_acceleration_shoulder,
unsafe_goal->max_angular_velocity_wrist,
unsafe_goal->max_angular_acceleration_wrist);
intake_.AdjustProfile(unsafe_goal->max_angular_velocity_wrist,
unsafe_goal->max_angular_acceleration_intake);
arm_.set_unprofiled_goal(unsafe_goal->angle_shoulder,
unsafe_goal->angle_wrist);
intake_.set_unprofiled_goal(unsafe_goal->angle_intake);
}
// Update state_ to accurately represent the state of the zeroing
// estimators.
if (state_ != RUNNING && state_ != ESTOP) {
state_ = UNINITIALIZED;
}
break;
case ESTOP:
LOG(ERROR, "Estop\n");
disable = true;
break;
}
// ESTOP if we hit any of the limits. It is safe(ish) to hit the limits while
// zeroing since we use such low power.
if (state_ == RUNNING) {
// ESTOP if we hit the hard limits.
if ((arm_.CheckHardLimits() || intake_.CheckHardLimits()) && output) {
state_ = ESTOP;
}
}
// Set the voltage limits.
const double max_voltage = state_ == RUNNING ? 12.0 : kZeroingVoltage;
arm_.set_max_voltage(max_voltage, max_voltage);
intake_.set_max_voltage(max_voltage);
// Calculate the loops for a cycle.
arm_.Update(disable);
intake_.Update(disable);
// Write out all the voltages.
if (output) {
output->voltage_intake = intake_.intake_voltage();
output->voltage_shoulder = arm_.shoulder_voltage();
output->voltage_wrist = arm_.wrist_voltage();
}
// Save debug/internal state.
// TODO(austin): Save the voltage errors.
status->zeroed = state_ == RUNNING;
status->shoulder.angle = arm_.X_hat(0, 0);
status->shoulder.angular_velocity = arm_.X_hat(1, 0);
status->shoulder.goal_angle = arm_.goal(0, 0);
status->shoulder.goal_angular_velocity = arm_.goal(1, 0);
status->shoulder.unprofiled_goal_angle = arm_.unprofiled_goal(0, 0);
status->shoulder.unprofiled_goal_angular_velocity =
arm_.unprofiled_goal(1, 0);
status->shoulder.estimator_state = arm_.ShoulderEstimatorState();
status->wrist.angle = arm_.X_hat(2, 0);
status->wrist.angular_velocity = arm_.X_hat(3, 0);
status->wrist.goal_angle = arm_.goal(2, 0);
status->wrist.goal_angular_velocity = arm_.goal(3, 0);
status->wrist.unprofiled_goal_angle = arm_.unprofiled_goal(2, 0);
status->wrist.unprofiled_goal_angular_velocity = arm_.unprofiled_goal(3, 0);
status->wrist.estimator_state = arm_.WristEstimatorState();
status->intake.angle = intake_.X_hat(0, 0);
status->intake.angular_velocity = intake_.X_hat(1, 0);
status->intake.goal_angle = intake_.goal(0, 0);
status->intake.goal_angular_velocity = intake_.goal(1, 0);
status->intake.unprofiled_goal_angle = intake_.unprofiled_goal(0, 0);
status->intake.unprofiled_goal_angular_velocity =
intake_.unprofiled_goal(1, 0);
status->intake.estimator_state = intake_.IntakeEstimatorState();
status->estopped = (state_ == ESTOP);
status->state = state_;
last_state_ = state_;
}
} // namespace superstructure
} // namespace control_loops
} // namespace y2016