blob: 79e2864968e48b3a07f97c5d5cde83fd5db108fb [file] [log] [blame]
#include "frc971/control_loops/drivetrain/drivetrain.h"
#include <stdio.h>
#include <sched.h>
#include <cmath>
#include <memory>
#include "aos/aos_core.h"
#include "aos/common/logging/logging.h"
#include "aos/common/queue.h"
#include "frc971/control_loops/state_feedback_loop.h"
#include "frc971/control_loops/drivetrain/drivetrain_motor_plant.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/queues/GyroAngle.q.h"
#include "frc971/queues/Piston.q.h"
using frc971::sensors::gyro;
namespace frc971 {
namespace control_loops {
// Width of the robot.
const double width = 22.0 / 100.0 * 2.54;
class DrivetrainMotorsSS {
public:
DrivetrainMotorsSS ()
: loop_(new StateFeedbackLoop<4, 2, 2>(MakeDrivetrainLoop())) {
_offset = 0;
_integral_offset = 0;
_left_goal = 0.0;
_right_goal = 0.0;
_raw_left = 0.0;
_raw_right = 0.0;
_control_loop_driving = false;
}
void SetGoal(double left, double left_velocity, double right, double right_velocity) {
_left_goal = left;
_right_goal = right;
loop_->R << left, left_velocity, right, right_velocity;
}
void SetRawPosition(double left, double right) {
_raw_right = right;
_raw_left = left;
loop_->Y << left, right;
}
void SetPosition(
double left, double right, double gyro, bool control_loop_driving) {
// Decay the offset quickly because this gyro is great.
_offset = (0.25) * (right - left - gyro * width) / 2.0 + 0.75 * _offset;
const double angle_error = (_right_goal - _left_goal) / width - (_raw_right - _offset - _raw_left - _offset) / width;
// TODO(aschuh): Add in the gyro.
_integral_offset = 0.0;
_offset = 0.0;
_gyro = gyro;
_control_loop_driving = control_loop_driving;
SetRawPosition(left, right);
LOG(DEBUG, "Left %f->%f Right %f->%f Gyro %f aerror %f ioff %f\n", left + _offset, _left_goal, right - _offset, _right_goal, gyro, angle_error, _integral_offset);
}
void Update(bool update_observer, bool stop_motors) {
loop_->Update(update_observer, stop_motors);
}
void SendMotors(Drivetrain::Output *output) {
if (output) {
output->left_voltage = loop_->U(0, 0);
output->right_voltage = loop_->U(1, 0);
}
}
void PrintMotors() const {
// LOG(DEBUG, "Left Power %f Right Power %f lg %f rg %f le %f re %f gyro %f\n", U[0], U[1], R[0], R[2], Y[0], Y[1], _gyro);
::Eigen::Matrix<double, 4, 1> E = loop_->R - loop_->X_hat;
LOG(DEBUG, "E[0, 0]: %f E[1, 0] %f E[2, 0] %f E[3, 0] %f\n", E(0, 0), E(1, 0), E(2, 0), E(3, 0));
}
private:
::std::unique_ptr<StateFeedbackLoop<4, 2, 2>> loop_;
double _integral_offset;
double _offset;
double _gyro;
double _left_goal;
double _right_goal;
double _raw_left;
double _raw_right;
bool _control_loop_driving;
};
class DrivetrainMotorsOL {
public:
DrivetrainMotorsOL() {
_old_wheel = 0.0;
_wheel = 0.0;
_throttle = 0.0;
_quickturn = false;
_highgear = true;
_neg_inertia_accumulator = 0.0;
_left_pwm = 0.0;
_right_pwm = 0.0;
}
void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) {
_wheel = wheel;
_throttle = throttle;
_quickturn = quickturn;
_highgear = highgear;
_left_pwm = 0.0;
_right_pwm = 0.0;
}
void Update(void) {
double overPower;
float sensitivity = 1.7;
float angular_power;
float linear_power;
double wheel;
double neg_inertia = _wheel - _old_wheel;
_old_wheel = _wheel;
double wheelNonLinearity;
if (_highgear) {
wheelNonLinearity = 0.1; // used to be csvReader->TURN_NONLIN_HIGH
// Apply a sin function that's scaled to make it feel better.
const double angular_range = M_PI / 2.0 * wheelNonLinearity;
wheel = sin(angular_range * _wheel) / sin(angular_range);
wheel = sin(angular_range * wheel) / sin(angular_range);
} else {
wheelNonLinearity = 0.2; // used to be csvReader->TURN_NONLIN_LOW
// Apply a sin function that's scaled to make it feel better.
const double angular_range = M_PI / 2.0 * wheelNonLinearity;
wheel = sin(angular_range * _wheel) / sin(angular_range);
wheel = sin(angular_range * wheel) / sin(angular_range);
wheel = sin(angular_range * wheel) / sin(angular_range);
}
static const double kThrottleDeadband = 0.05;
if (::std::abs(_throttle) < kThrottleDeadband) {
_throttle = 0;
} else {
_throttle = copysign((::std::abs(_throttle) - kThrottleDeadband) /
(1.0 - kThrottleDeadband), _throttle);
}
double neg_inertia_scalar;
if (_highgear) {
neg_inertia_scalar = 8.0; // used to be csvReader->NEG_INTERTIA_HIGH
sensitivity = 1.22; // used to be csvReader->SENSE_HIGH
} else {
if (wheel * neg_inertia > 0) {
neg_inertia_scalar = 5; // used to be csvReader->NEG_INERTIA_LOW_MORE
} else {
if (::std::abs(wheel) > 0.65) {
neg_inertia_scalar = 5; // used to be csvReader->NEG_INTERTIA_LOW_LESS_EXT
} else {
neg_inertia_scalar = 5; // used to be csvReader->NEG_INTERTIA_LOW_LESS
}
}
sensitivity = 1.24; // used to be csvReader->SENSE_LOW
}
double neg_inertia_power = neg_inertia * neg_inertia_scalar;
_neg_inertia_accumulator += neg_inertia_power;
wheel = wheel + _neg_inertia_accumulator;
if (_neg_inertia_accumulator > 1) {
_neg_inertia_accumulator -= 1;
} else if (_neg_inertia_accumulator < -1) {
_neg_inertia_accumulator += 1;
} else {
_neg_inertia_accumulator = 0;
}
linear_power = _throttle;
if (_quickturn) {
double qt_angular_power = wheel;
if (::std::abs(linear_power) < 0.2) {
if (qt_angular_power > 1) qt_angular_power = 1.0;
if (qt_angular_power < -1) qt_angular_power = -1.0;
} else {
qt_angular_power = 0.0;
}
overPower = 1.0;
if (_highgear) {
sensitivity = 1.0;
} else {
sensitivity = 1.0;
}
angular_power = wheel;
} else {
overPower = 0.0;
angular_power = ::std::abs(_throttle) * wheel * sensitivity;
}
_right_pwm = _left_pwm = linear_power;
_left_pwm += angular_power;
_right_pwm -= angular_power;
if (_left_pwm > 1.0) {
_right_pwm -= overPower*(_left_pwm - 1.0);
_left_pwm = 1.0;
} else if (_right_pwm > 1.0) {
_left_pwm -= overPower*(_right_pwm - 1.0);
_right_pwm = 1.0;
} else if (_left_pwm < -1.0) {
_right_pwm += overPower*(-1.0 - _left_pwm);
_left_pwm = -1.0;
} else if (_right_pwm < -1.0) {
_left_pwm += overPower*(-1.0 - _right_pwm);
_right_pwm = -1.0;
}
}
void SendMotors(Drivetrain::Output *output) {
LOG(DEBUG, "left pwm: %f right pwm: %f wheel: %f throttle: %f\n",
_left_pwm, _right_pwm, _wheel, _throttle);
if (output) {
output->left_voltage = _left_pwm * 12.0;
output->right_voltage = _right_pwm * 12.0;
}
if (_highgear) {
shifters.MakeWithBuilder().set(false).Send();
} else {
shifters.MakeWithBuilder().set(true).Send();
}
}
private:
double _old_wheel;
double _wheel;
double _throttle;
bool _quickturn;
bool _highgear;
double _neg_inertia_accumulator;
double _left_pwm;
double _right_pwm;
};
void DrivetrainLoop::RunIteration(const Drivetrain::Goal *goal,
const Drivetrain::Position *position,
Drivetrain::Output *output,
Drivetrain::Status * /*status*/) {
// TODO(aschuh): These should be members of the class.
static DrivetrainMotorsSS dt_closedloop;
static DrivetrainMotorsOL dt_openloop;
bool bad_pos = false;
if (position == NULL) {
LOG(WARNING, "no position\n");
bad_pos = true;
}
bool bad_output = false;
if (output == NULL) {
LOG(WARNING, "no output\n");
bad_output = true;
}
double wheel = goal->steering;
double throttle = goal->throttle;
bool quickturn = goal->quickturn;
bool highgear = goal->highgear;
bool control_loop_driving = goal->control_loop_driving;
double left_goal = goal->left_goal;
double right_goal = goal->right_goal;
dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal,
right_goal, goal->right_velocity_goal);
if (!bad_pos) {
const double left_encoder = position->left_encoder;
const double right_encoder = position->right_encoder;
if (gyro.FetchLatest()) {
dt_closedloop.SetPosition(left_encoder, right_encoder,
gyro->angle, control_loop_driving);
} else {
dt_closedloop.SetRawPosition(left_encoder, right_encoder);
}
}
dt_closedloop.Update(position, output == NULL);
//dt_closedloop.PrintMotors();
dt_openloop.SetGoal(wheel, throttle, quickturn, highgear);
dt_openloop.Update();
if (control_loop_driving) {
dt_closedloop.SendMotors(output);
} else {
dt_openloop.SendMotors(output);
}
}
} // namespace control_loops
} // namespace frc971