Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <limits> |
| 12 | #include <Eigen/Eigenvalues> |
| 13 | |
| 14 | template<typename MatrixType> void real_qz(const MatrixType& m) |
| 15 | { |
| 16 | /* this test covers the following files: |
| 17 | RealQZ.h |
| 18 | */ |
| 19 | using std::abs; |
| 20 | typedef typename MatrixType::Index Index; |
| 21 | typedef typename MatrixType::Scalar Scalar; |
| 22 | |
| 23 | Index dim = m.cols(); |
| 24 | |
| 25 | MatrixType A = MatrixType::Random(dim,dim), |
| 26 | B = MatrixType::Random(dim,dim); |
| 27 | |
| 28 | |
| 29 | // Regression test for bug 985: Randomly set rows or columns to zero |
| 30 | Index k=internal::random<Index>(0, dim-1); |
| 31 | switch(internal::random<int>(0,10)) { |
| 32 | case 0: |
| 33 | A.row(k).setZero(); break; |
| 34 | case 1: |
| 35 | A.col(k).setZero(); break; |
| 36 | case 2: |
| 37 | B.row(k).setZero(); break; |
| 38 | case 3: |
| 39 | B.col(k).setZero(); break; |
| 40 | default: |
| 41 | break; |
| 42 | } |
| 43 | |
| 44 | RealQZ<MatrixType> qz(A,B); |
| 45 | |
| 46 | VERIFY_IS_EQUAL(qz.info(), Success); |
| 47 | // check for zeros |
| 48 | bool all_zeros = true; |
| 49 | for (Index i=0; i<A.cols(); i++) |
| 50 | for (Index j=0; j<i; j++) { |
| 51 | if (abs(qz.matrixT()(i,j))!=Scalar(0.0)) |
| 52 | all_zeros = false; |
| 53 | if (j<i-1 && abs(qz.matrixS()(i,j))!=Scalar(0.0)) |
| 54 | all_zeros = false; |
| 55 | if (j==i-1 && j>0 && abs(qz.matrixS()(i,j))!=Scalar(0.0) && abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0)) |
| 56 | all_zeros = false; |
| 57 | } |
| 58 | VERIFY_IS_EQUAL(all_zeros, true); |
| 59 | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A); |
| 60 | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); |
| 61 | VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim)); |
| 62 | VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim)); |
| 63 | } |
| 64 | |
| 65 | void test_real_qz() |
| 66 | { |
| 67 | int s = 0; |
| 68 | for(int i = 0; i < g_repeat; i++) { |
| 69 | CALL_SUBTEST_1( real_qz(Matrix4f()) ); |
| 70 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| 71 | CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) ); |
| 72 | |
| 73 | // some trivial but implementation-wise tricky cases |
| 74 | CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) ); |
| 75 | CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) ); |
| 76 | CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) ); |
| 77 | CALL_SUBTEST_4( real_qz(Matrix2d()) ); |
| 78 | } |
| 79 | |
| 80 | TEST_SET_BUT_UNUSED_VARIABLE(s) |
| 81 | } |