Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | // workaround issue between gcc >= 4.7 and cuda 5.5 |
| 11 | #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) |
| 12 | #undef _GLIBCXX_ATOMIC_BUILTINS |
| 13 | #undef _GLIBCXX_USE_INT128 |
| 14 | #endif |
| 15 | |
| 16 | #define EIGEN_TEST_NO_LONGDOUBLE |
| 17 | #define EIGEN_TEST_NO_COMPLEX |
| 18 | #define EIGEN_TEST_FUNC cuda_basic |
| 19 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| 20 | |
| 21 | #include <math_constants.h> |
| 22 | #include <cuda.h> |
| 23 | #include "main.h" |
| 24 | #include "cuda_common.h" |
| 25 | |
| 26 | // Check that dense modules can be properly parsed by nvcc |
| 27 | #include <Eigen/Dense> |
| 28 | |
| 29 | // struct Foo{ |
| 30 | // EIGEN_DEVICE_FUNC |
| 31 | // void operator()(int i, const float* mats, float* vecs) const { |
| 32 | // using namespace Eigen; |
| 33 | // // Matrix3f M(data); |
| 34 | // // Vector3f x(data+9); |
| 35 | // // Map<Vector3f>(data+9) = M.inverse() * x; |
| 36 | // Matrix3f M(mats+i/16); |
| 37 | // Vector3f x(vecs+i*3); |
| 38 | // // using std::min; |
| 39 | // // using std::sqrt; |
| 40 | // Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x(); |
| 41 | // //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); |
| 42 | // } |
| 43 | // }; |
| 44 | |
| 45 | template<typename T> |
| 46 | struct coeff_wise { |
| 47 | EIGEN_DEVICE_FUNC |
| 48 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 49 | { |
| 50 | using namespace Eigen; |
| 51 | T x1(in+i); |
| 52 | T x2(in+i+1); |
| 53 | T x3(in+i+2); |
| 54 | Map<T> res(out+i*T::MaxSizeAtCompileTime); |
| 55 | |
| 56 | res.array() += (in[0] * x1 + x2).array() * x3.array(); |
| 57 | } |
| 58 | }; |
| 59 | |
| 60 | template<typename T> |
| 61 | struct replicate { |
| 62 | EIGEN_DEVICE_FUNC |
| 63 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 64 | { |
| 65 | using namespace Eigen; |
| 66 | T x1(in+i); |
| 67 | int step = x1.size() * 4; |
| 68 | int stride = 3 * step; |
| 69 | |
| 70 | typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType; |
| 71 | MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); |
| 72 | MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); |
| 73 | MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); |
| 74 | } |
| 75 | }; |
| 76 | |
| 77 | template<typename T> |
| 78 | struct redux { |
| 79 | EIGEN_DEVICE_FUNC |
| 80 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 81 | { |
| 82 | using namespace Eigen; |
| 83 | int N = 10; |
| 84 | T x1(in+i); |
| 85 | out[i*N+0] = x1.minCoeff(); |
| 86 | out[i*N+1] = x1.maxCoeff(); |
| 87 | out[i*N+2] = x1.sum(); |
| 88 | out[i*N+3] = x1.prod(); |
| 89 | out[i*N+4] = x1.matrix().squaredNorm(); |
| 90 | out[i*N+5] = x1.matrix().norm(); |
| 91 | out[i*N+6] = x1.colwise().sum().maxCoeff(); |
| 92 | out[i*N+7] = x1.rowwise().maxCoeff().sum(); |
| 93 | out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); |
| 94 | } |
| 95 | }; |
| 96 | |
| 97 | template<typename T1, typename T2> |
| 98 | struct prod_test { |
| 99 | EIGEN_DEVICE_FUNC |
| 100 | void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
| 101 | { |
| 102 | using namespace Eigen; |
| 103 | typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3; |
| 104 | T1 x1(in+i); |
| 105 | T2 x2(in+i+1); |
| 106 | Map<T3> res(out+i*T3::MaxSizeAtCompileTime); |
| 107 | res += in[i] * x1 * x2; |
| 108 | } |
| 109 | }; |
| 110 | |
| 111 | template<typename T1, typename T2> |
| 112 | struct diagonal { |
| 113 | EIGEN_DEVICE_FUNC |
| 114 | void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
| 115 | { |
| 116 | using namespace Eigen; |
| 117 | T1 x1(in+i); |
| 118 | Map<T2> res(out+i*T2::MaxSizeAtCompileTime); |
| 119 | res += x1.diagonal(); |
| 120 | } |
| 121 | }; |
| 122 | |
| 123 | template<typename T> |
| 124 | struct eigenvalues { |
| 125 | EIGEN_DEVICE_FUNC |
| 126 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 127 | { |
| 128 | using namespace Eigen; |
| 129 | typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; |
| 130 | T M(in+i); |
| 131 | Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); |
| 132 | T A = M*M.adjoint(); |
| 133 | SelfAdjointEigenSolver<T> eig; |
| 134 | eig.computeDirect(M); |
| 135 | res = eig.eigenvalues(); |
| 136 | } |
| 137 | }; |
| 138 | |
| 139 | void test_cuda_basic() |
| 140 | { |
| 141 | ei_test_init_cuda(); |
| 142 | |
| 143 | int nthreads = 100; |
| 144 | Eigen::VectorXf in, out; |
| 145 | |
| 146 | #ifndef __CUDA_ARCH__ |
| 147 | int data_size = nthreads * 512; |
| 148 | in.setRandom(data_size); |
| 149 | out.setRandom(data_size); |
| 150 | #endif |
| 151 | |
| 152 | CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Vector3f>(), nthreads, in, out) ); |
| 153 | CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Array44f>(), nthreads, in, out) ); |
| 154 | |
| 155 | CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array4f>(), nthreads, in, out) ); |
| 156 | CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array33f>(), nthreads, in, out) ); |
| 157 | |
| 158 | CALL_SUBTEST( run_and_compare_to_cuda(redux<Array4f>(), nthreads, in, out) ); |
| 159 | CALL_SUBTEST( run_and_compare_to_cuda(redux<Matrix3f>(), nthreads, in, out) ); |
| 160 | |
| 161 | CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) ); |
| 162 | CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) ); |
| 163 | |
| 164 | CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) ); |
| 165 | CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) ); |
| 166 | |
| 167 | CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix3f>(), nthreads, in, out) ); |
| 168 | CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix2f>(), nthreads, in, out) ); |
| 169 | |
| 170 | } |