Austin Schuh | 9a24b37 | 2018-01-28 16:12:29 -0800 | [diff] [blame^] | 1 | /************************************************************************************************** |
| 2 | * * |
| 3 | * This file is part of BLASFEO. * |
| 4 | * * |
| 5 | * BLASFEO -- BLAS For Embedded Optimization. * |
| 6 | * Copyright (C) 2016-2017 by Gianluca Frison. * |
| 7 | * Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. * |
| 8 | * All rights reserved. * |
| 9 | * * |
| 10 | * HPMPC is free software; you can redistribute it and/or * |
| 11 | * modify it under the terms of the GNU Lesser General Public * |
| 12 | * License as published by the Free Software Foundation; either * |
| 13 | * version 2.1 of the License, or (at your option) any later version. * |
| 14 | * * |
| 15 | * HPMPC is distributed in the hope that it will be useful, * |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * |
| 18 | * See the GNU Lesser General Public License for more details. * |
| 19 | * * |
| 20 | * You should have received a copy of the GNU Lesser General Public * |
| 21 | * License along with HPMPC; if not, write to the Free Software * |
| 22 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * |
| 23 | * * |
| 24 | * Author: Gianluca Frison, giaf (at) dtu.dk * |
| 25 | * gianluca.frison (at) imtek.uni-freiburg.de * |
| 26 | * * |
| 27 | **************************************************************************************************/ |
| 28 | |
| 29 | #include <math.h> |
| 30 | #include <stdio.h> |
| 31 | |
| 32 | #include "../../include/blasfeo_common.h" |
| 33 | #include "../../include/blasfeo_d_aux.h" |
| 34 | |
| 35 | |
| 36 | |
| 37 | void kernel_dgeqrf_4_lib4(int m, double *pD, int sdd, double *dD) |
| 38 | { |
| 39 | int ii, jj, ll; |
| 40 | double alpha, beta, tmp, w1, w2, w3; |
| 41 | const int ps = 4; |
| 42 | // first column |
| 43 | beta = 0.0; |
| 44 | ii = 1; |
| 45 | if(m>1) |
| 46 | { |
| 47 | tmp = pD[1+ps*0]; |
| 48 | beta += tmp*tmp; |
| 49 | if(m>2) |
| 50 | { |
| 51 | tmp = pD[2+ps*0]; |
| 52 | beta += tmp*tmp; |
| 53 | if(m>3) |
| 54 | { |
| 55 | tmp = pD[3+ps*0]; |
| 56 | beta += tmp*tmp; |
| 57 | } |
| 58 | } |
| 59 | } |
| 60 | for(ii=4; ii<m-3; ii+=4) |
| 61 | { |
| 62 | tmp = pD[0+ii*sdd+ps*0]; |
| 63 | beta += tmp*tmp; |
| 64 | tmp = pD[1+ii*sdd+ps*0]; |
| 65 | beta += tmp*tmp; |
| 66 | tmp = pD[2+ii*sdd+ps*0]; |
| 67 | beta += tmp*tmp; |
| 68 | tmp = pD[3+ii*sdd+ps*0]; |
| 69 | beta += tmp*tmp; |
| 70 | } |
| 71 | for(ll=0; ll<m-ii; ll++) |
| 72 | { |
| 73 | tmp = pD[ll+ii*sdd+ps*0]; |
| 74 | beta += tmp*tmp; |
| 75 | } |
| 76 | if(beta==0.0) |
| 77 | { |
| 78 | // tau |
| 79 | dD[0] = 0.0; |
| 80 | } |
| 81 | else |
| 82 | { |
| 83 | alpha = pD[0+ps*0]; |
| 84 | beta += alpha*alpha; |
| 85 | beta = sqrt(beta); |
| 86 | if(alpha>0) |
| 87 | beta = -beta; |
| 88 | // tau0 |
| 89 | dD[0] = (beta-alpha) / beta; |
| 90 | tmp = 1.0 / (alpha-beta); |
| 91 | // compute v0 |
| 92 | pD[0+ps*0] = beta; |
| 93 | ii = 1; |
| 94 | if(m>1) |
| 95 | { |
| 96 | pD[1+ps*0] *= tmp; |
| 97 | if(m>2) |
| 98 | { |
| 99 | pD[2+ps*0] *= tmp; |
| 100 | if(m>3) |
| 101 | { |
| 102 | pD[3+ps*0] *= tmp; |
| 103 | } |
| 104 | } |
| 105 | } |
| 106 | for(ii=4; ii<m-3; ii+=4) |
| 107 | { |
| 108 | pD[0+ii*sdd+ps*0] *= tmp; |
| 109 | pD[1+ii*sdd+ps*0] *= tmp; |
| 110 | pD[2+ii*sdd+ps*0] *= tmp; |
| 111 | pD[3+ii*sdd+ps*0] *= tmp; |
| 112 | } |
| 113 | for(ll=0; ll<m-ii; ll++) |
| 114 | { |
| 115 | pD[ll+ii*sdd+ps*0] *= tmp; |
| 116 | } |
| 117 | } |
| 118 | // gemv_t & ger |
| 119 | w1 = pD[0+ps*1]; |
| 120 | w2 = pD[0+ps*2]; |
| 121 | w3 = pD[0+ps*3]; |
| 122 | if(m>1) |
| 123 | { |
| 124 | w1 += pD[1+ps*1] * pD[1+ps*0]; |
| 125 | w2 += pD[1+ps*2] * pD[1+ps*0]; |
| 126 | w3 += pD[1+ps*3] * pD[1+ps*0]; |
| 127 | if(m>2) |
| 128 | { |
| 129 | w1 += pD[2+ps*1] * pD[2+ps*0]; |
| 130 | w2 += pD[2+ps*2] * pD[2+ps*0]; |
| 131 | w3 += pD[2+ps*3] * pD[2+ps*0]; |
| 132 | if(m>3) |
| 133 | { |
| 134 | w1 += pD[3+ps*1] * pD[3+ps*0]; |
| 135 | w2 += pD[3+ps*2] * pD[3+ps*0]; |
| 136 | w3 += pD[3+ps*3] * pD[3+ps*0]; |
| 137 | } |
| 138 | } |
| 139 | } |
| 140 | for(ii=4; ii<m-3; ii+=4) |
| 141 | { |
| 142 | w1 += pD[0+ii*sdd+ps*1] * pD[0+ii*sdd+ps*0]; |
| 143 | w2 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*0]; |
| 144 | w3 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*0]; |
| 145 | w1 += pD[1+ii*sdd+ps*1] * pD[1+ii*sdd+ps*0]; |
| 146 | w2 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*0]; |
| 147 | w3 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*0]; |
| 148 | w1 += pD[2+ii*sdd+ps*1] * pD[2+ii*sdd+ps*0]; |
| 149 | w2 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*0]; |
| 150 | w3 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*0]; |
| 151 | w1 += pD[3+ii*sdd+ps*1] * pD[3+ii*sdd+ps*0]; |
| 152 | w2 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*0]; |
| 153 | w3 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*0]; |
| 154 | } |
| 155 | for(ll=0; ll<m-ii; ll++) |
| 156 | { |
| 157 | w1 += pD[ll+ii*sdd+ps*1] * pD[ll+ii*sdd+ps*0]; |
| 158 | w2 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*0]; |
| 159 | w3 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*0]; |
| 160 | } |
| 161 | w1 = - dD[0] * w1; |
| 162 | w2 = - dD[0] * w2; |
| 163 | w3 = - dD[0] * w3; |
| 164 | pD[0+ps*1] += w1; |
| 165 | pD[0+ps*2] += w2; |
| 166 | pD[0+ps*3] += w3; |
| 167 | if(m>1) |
| 168 | { |
| 169 | pD[1+ps*1] += w1 * pD[1+ps*0]; |
| 170 | pD[1+ps*2] += w2 * pD[1+ps*0]; |
| 171 | pD[1+ps*3] += w3 * pD[1+ps*0]; |
| 172 | if(m>2) |
| 173 | { |
| 174 | pD[2+ps*1] += w1 * pD[2+ps*0]; |
| 175 | pD[2+ps*2] += w2 * pD[2+ps*0]; |
| 176 | pD[2+ps*3] += w3 * pD[2+ps*0]; |
| 177 | if(m>3) |
| 178 | { |
| 179 | pD[3+ps*1] += w1 * pD[3+ps*0]; |
| 180 | pD[3+ps*2] += w2 * pD[3+ps*0]; |
| 181 | pD[3+ps*3] += w3 * pD[3+ps*0]; |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | for(ii=4; ii<m-3; ii+=4) |
| 186 | { |
| 187 | pD[0+ii*sdd+ps*1] += w1 * pD[0+ii*sdd+ps*0]; |
| 188 | pD[0+ii*sdd+ps*2] += w2 * pD[0+ii*sdd+ps*0]; |
| 189 | pD[0+ii*sdd+ps*3] += w3 * pD[0+ii*sdd+ps*0]; |
| 190 | pD[1+ii*sdd+ps*1] += w1 * pD[1+ii*sdd+ps*0]; |
| 191 | pD[1+ii*sdd+ps*2] += w2 * pD[1+ii*sdd+ps*0]; |
| 192 | pD[1+ii*sdd+ps*3] += w3 * pD[1+ii*sdd+ps*0]; |
| 193 | pD[2+ii*sdd+ps*1] += w1 * pD[2+ii*sdd+ps*0]; |
| 194 | pD[2+ii*sdd+ps*2] += w2 * pD[2+ii*sdd+ps*0]; |
| 195 | pD[2+ii*sdd+ps*3] += w3 * pD[2+ii*sdd+ps*0]; |
| 196 | pD[3+ii*sdd+ps*1] += w1 * pD[3+ii*sdd+ps*0]; |
| 197 | pD[3+ii*sdd+ps*2] += w2 * pD[3+ii*sdd+ps*0]; |
| 198 | pD[3+ii*sdd+ps*3] += w3 * pD[3+ii*sdd+ps*0]; |
| 199 | } |
| 200 | for(ll=0; ll<m-ii; ll++) |
| 201 | { |
| 202 | pD[ll+ii*sdd+ps*1] += w1 * pD[ll+ii*sdd+ps*0]; |
| 203 | pD[ll+ii*sdd+ps*2] += w2 * pD[ll+ii*sdd+ps*0]; |
| 204 | pD[ll+ii*sdd+ps*3] += w3 * pD[ll+ii*sdd+ps*0]; |
| 205 | } |
| 206 | if(m==1) |
| 207 | return; |
| 208 | // second column |
| 209 | beta = 0.0; |
| 210 | if(m>2) |
| 211 | { |
| 212 | tmp = pD[2+ps*1]; |
| 213 | beta += tmp*tmp; |
| 214 | if(m>3) |
| 215 | { |
| 216 | tmp = pD[3+ps*1]; |
| 217 | beta += tmp*tmp; |
| 218 | } |
| 219 | } |
| 220 | for(ii=4; ii<m-3; ii+=4) |
| 221 | { |
| 222 | tmp = pD[0+ii*sdd+ps*1]; |
| 223 | beta += tmp*tmp; |
| 224 | tmp = pD[1+ii*sdd+ps*1]; |
| 225 | beta += tmp*tmp; |
| 226 | tmp = pD[2+ii*sdd+ps*1]; |
| 227 | beta += tmp*tmp; |
| 228 | tmp = pD[3+ii*sdd+ps*1]; |
| 229 | beta += tmp*tmp; |
| 230 | } |
| 231 | for(ll=0; ll<m-ii; ll++) |
| 232 | { |
| 233 | tmp = pD[ll+ii*sdd+ps*1]; |
| 234 | beta += tmp*tmp; |
| 235 | } |
| 236 | if(beta==0.0) |
| 237 | { |
| 238 | // tau |
| 239 | dD[1] = 0.0; |
| 240 | } |
| 241 | else |
| 242 | { |
| 243 | alpha = pD[1+ps*1]; |
| 244 | beta += alpha*alpha; |
| 245 | beta = sqrt(beta); |
| 246 | if(alpha>0) |
| 247 | beta = -beta; |
| 248 | // tau0 |
| 249 | dD[1] = (beta-alpha) / beta; |
| 250 | tmp = 1.0 / (alpha-beta); |
| 251 | // compute v0 |
| 252 | pD[1+ps*1] = beta; |
| 253 | if(m>2) |
| 254 | { |
| 255 | pD[2+ps*1] *= tmp; |
| 256 | if(m>3) |
| 257 | { |
| 258 | pD[3+ps*1] *= tmp; |
| 259 | } |
| 260 | } |
| 261 | for(ii=4; ii<m-3; ii+=4) |
| 262 | { |
| 263 | pD[0+ii*sdd+ps*1] *= tmp; |
| 264 | pD[1+ii*sdd+ps*1] *= tmp; |
| 265 | pD[2+ii*sdd+ps*1] *= tmp; |
| 266 | pD[3+ii*sdd+ps*1] *= tmp; |
| 267 | } |
| 268 | for(ll=0; ll<m-ii; ll++) |
| 269 | { |
| 270 | pD[ll+ii*sdd+ps*1] *= tmp; |
| 271 | } |
| 272 | } |
| 273 | // gemv_t & ger |
| 274 | w2 = pD[1+ps*2]; |
| 275 | w3 = pD[1+ps*3]; |
| 276 | if(m>2) |
| 277 | { |
| 278 | w2 += pD[2+ps*2] * pD[2+ps*1]; |
| 279 | w3 += pD[2+ps*3] * pD[2+ps*1]; |
| 280 | if(m>3) |
| 281 | { |
| 282 | w2 += pD[3+ps*2] * pD[3+ps*1]; |
| 283 | w3 += pD[3+ps*3] * pD[3+ps*1]; |
| 284 | } |
| 285 | } |
| 286 | for(ii=4; ii<m-3; ii+=4) |
| 287 | { |
| 288 | w2 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*1]; |
| 289 | w3 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*1]; |
| 290 | w2 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*1]; |
| 291 | w3 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*1]; |
| 292 | w2 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*1]; |
| 293 | w3 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*1]; |
| 294 | w2 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*1]; |
| 295 | w3 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*1]; |
| 296 | } |
| 297 | for(ll=0; ll<m-ii; ll++) |
| 298 | { |
| 299 | w2 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*1]; |
| 300 | w3 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*1]; |
| 301 | } |
| 302 | w2 = - dD[1] * w2; |
| 303 | w3 = - dD[1] * w3; |
| 304 | pD[1+ps*2] += w2; |
| 305 | pD[1+ps*3] += w3; |
| 306 | if(m>2) |
| 307 | { |
| 308 | pD[2+ps*2] += w2 * pD[2+ps*1]; |
| 309 | pD[2+ps*3] += w3 * pD[2+ps*1]; |
| 310 | if(m>3) |
| 311 | { |
| 312 | pD[3+ps*2] += w2 * pD[3+ps*1]; |
| 313 | pD[3+ps*3] += w3 * pD[3+ps*1]; |
| 314 | } |
| 315 | } |
| 316 | for(ii=4; ii<m-3; ii+=4) |
| 317 | { |
| 318 | pD[0+ii*sdd+ps*2] += w2 * pD[0+ii*sdd+ps*1]; |
| 319 | pD[0+ii*sdd+ps*3] += w3 * pD[0+ii*sdd+ps*1]; |
| 320 | pD[1+ii*sdd+ps*2] += w2 * pD[1+ii*sdd+ps*1]; |
| 321 | pD[1+ii*sdd+ps*3] += w3 * pD[1+ii*sdd+ps*1]; |
| 322 | pD[2+ii*sdd+ps*2] += w2 * pD[2+ii*sdd+ps*1]; |
| 323 | pD[2+ii*sdd+ps*3] += w3 * pD[2+ii*sdd+ps*1]; |
| 324 | pD[3+ii*sdd+ps*2] += w2 * pD[3+ii*sdd+ps*1]; |
| 325 | pD[3+ii*sdd+ps*3] += w3 * pD[3+ii*sdd+ps*1]; |
| 326 | } |
| 327 | for(ll=0; ll<m-ii; ll++) |
| 328 | { |
| 329 | pD[ll+ii*sdd+ps*2] += w2 * pD[ll+ii*sdd+ps*1]; |
| 330 | pD[ll+ii*sdd+ps*3] += w3 * pD[ll+ii*sdd+ps*1]; |
| 331 | } |
| 332 | if(m==2) |
| 333 | return; |
| 334 | // third column |
| 335 | beta = 0.0; |
| 336 | if(m>3) |
| 337 | { |
| 338 | tmp = pD[3+ps*2]; |
| 339 | beta += tmp*tmp; |
| 340 | } |
| 341 | for(ii=4; ii<m-3; ii+=4) |
| 342 | { |
| 343 | tmp = pD[0+ii*sdd+ps*2]; |
| 344 | beta += tmp*tmp; |
| 345 | tmp = pD[1+ii*sdd+ps*2]; |
| 346 | beta += tmp*tmp; |
| 347 | tmp = pD[2+ii*sdd+ps*2]; |
| 348 | beta += tmp*tmp; |
| 349 | tmp = pD[3+ii*sdd+ps*2]; |
| 350 | beta += tmp*tmp; |
| 351 | } |
| 352 | for(ll=0; ll<m-ii; ll++) |
| 353 | { |
| 354 | tmp = pD[ll+ii*sdd+ps*2]; |
| 355 | beta += tmp*tmp; |
| 356 | } |
| 357 | if(beta==0.0) |
| 358 | { |
| 359 | // tau |
| 360 | dD[2] = 0.0; |
| 361 | } |
| 362 | else |
| 363 | { |
| 364 | alpha = pD[2+ps*2]; |
| 365 | beta += alpha*alpha; |
| 366 | beta = sqrt(beta); |
| 367 | if(alpha>0) |
| 368 | beta = -beta; |
| 369 | // tau0 |
| 370 | dD[2] = (beta-alpha) / beta; |
| 371 | tmp = 1.0 / (alpha-beta); |
| 372 | // compute v0 |
| 373 | pD[2+ps*2] = beta; |
| 374 | if(m>3) |
| 375 | { |
| 376 | pD[3+ps*2] *= tmp; |
| 377 | } |
| 378 | for(ii=4; ii<m-3; ii+=4) |
| 379 | { |
| 380 | pD[0+ii*sdd+ps*2] *= tmp; |
| 381 | pD[1+ii*sdd+ps*2] *= tmp; |
| 382 | pD[2+ii*sdd+ps*2] *= tmp; |
| 383 | pD[3+ii*sdd+ps*2] *= tmp; |
| 384 | } |
| 385 | for(ll=0; ll<m-ii; ll++) |
| 386 | { |
| 387 | pD[ll+ii*sdd+ps*2] *= tmp; |
| 388 | } |
| 389 | } |
| 390 | // gemv_t & ger |
| 391 | w3 = pD[2+ps*3]; |
| 392 | if(m>3) |
| 393 | { |
| 394 | w3 += pD[3+ps*3] * pD[3+ps*2]; |
| 395 | } |
| 396 | for(ii=4; ii<m-3; ii+=4) |
| 397 | { |
| 398 | w3 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*2]; |
| 399 | w3 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*2]; |
| 400 | w3 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*2]; |
| 401 | w3 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*2]; |
| 402 | } |
| 403 | for(ll=0; ll<m-ii; ll++) |
| 404 | { |
| 405 | w3 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*2]; |
| 406 | } |
| 407 | w3 = - dD[2] * w3; |
| 408 | pD[2+ps*3] += w3; |
| 409 | if(m>3) |
| 410 | { |
| 411 | pD[3+ps*3] += w3 * pD[3+ps*2]; |
| 412 | } |
| 413 | for(ii=4; ii<m-3; ii+=4) |
| 414 | { |
| 415 | pD[0+ii*sdd+ps*3] += w3 * pD[0+ii*sdd+ps*2]; |
| 416 | pD[1+ii*sdd+ps*3] += w3 * pD[1+ii*sdd+ps*2]; |
| 417 | pD[2+ii*sdd+ps*3] += w3 * pD[2+ii*sdd+ps*2]; |
| 418 | pD[3+ii*sdd+ps*3] += w3 * pD[3+ii*sdd+ps*2]; |
| 419 | } |
| 420 | for(ll=0; ll<m-ii; ll++) |
| 421 | { |
| 422 | pD[ll+ii*sdd+ps*3] += w3 * pD[ll+ii*sdd+ps*2]; |
| 423 | } |
| 424 | if(m==3) |
| 425 | return; |
| 426 | // fourth column |
| 427 | beta = 0.0; |
| 428 | for(ii=4; ii<m-3; ii+=4) |
| 429 | { |
| 430 | tmp = pD[0+ii*sdd+ps*3]; |
| 431 | beta += tmp*tmp; |
| 432 | tmp = pD[1+ii*sdd+ps*3]; |
| 433 | beta += tmp*tmp; |
| 434 | tmp = pD[2+ii*sdd+ps*3]; |
| 435 | beta += tmp*tmp; |
| 436 | tmp = pD[3+ii*sdd+ps*3]; |
| 437 | beta += tmp*tmp; |
| 438 | } |
| 439 | for(ll=0; ll<m-ii; ll++) |
| 440 | { |
| 441 | tmp = pD[ll+ii*sdd+ps*3]; |
| 442 | beta += tmp*tmp; |
| 443 | } |
| 444 | if(beta==0.0) |
| 445 | { |
| 446 | // tau |
| 447 | dD[3] = 0.0; |
| 448 | } |
| 449 | else |
| 450 | { |
| 451 | alpha = pD[3+ps*3]; |
| 452 | beta += alpha*alpha; |
| 453 | beta = sqrt(beta); |
| 454 | if(alpha>0) |
| 455 | beta = -beta; |
| 456 | // tau0 |
| 457 | dD[3] = (beta-alpha) / beta; |
| 458 | tmp = 1.0 / (alpha-beta); |
| 459 | // compute v0 |
| 460 | pD[3+ps*3] = beta; |
| 461 | for(ii=4; ii<m-3; ii+=4) |
| 462 | { |
| 463 | pD[0+ii*sdd+ps*3] *= tmp; |
| 464 | pD[1+ii*sdd+ps*3] *= tmp; |
| 465 | pD[2+ii*sdd+ps*3] *= tmp; |
| 466 | pD[3+ii*sdd+ps*3] *= tmp; |
| 467 | } |
| 468 | for(ll=0; ll<m-ii; ll++) |
| 469 | { |
| 470 | pD[ll+ii*sdd+ps*3] *= tmp; |
| 471 | } |
| 472 | } |
| 473 | return; |
| 474 | } |
| 475 | |
| 476 | |
| 477 | // unblocked algorithm |
| 478 | void kernel_dgeqrf_vs_lib4(int m, int n, int k, int offD, double *pD, int sdd, double *dD) |
| 479 | { |
| 480 | if(m<=0 | n<=0) |
| 481 | return; |
| 482 | int ii, jj, kk, ll, imax, jmax, jmax0, kmax, kmax0; |
| 483 | const int ps = 4; |
| 484 | imax = k; //m<n ? m : n; |
| 485 | double alpha, beta, tmp, w0; |
| 486 | double *pC00, *pC10, *pC01, *pC11; |
| 487 | int offset; |
| 488 | double *pD0 = pD-offD; |
| 489 | for(ii=0; ii<imax; ii++) |
| 490 | { |
| 491 | pC00 = &pD0[((offD+ii)&(ps-1))+((offD+ii)-((offD+ii)&(ps-1)))*sdd+ii*ps]; |
| 492 | pC10 = &pD0[((offD+ii+1)&(ps-1))+((offD+ii+1)-((offD+ii+1)&(ps-1)))*sdd+ii*ps]; |
| 493 | beta = 0.0; |
| 494 | jmax = m-ii-1; |
| 495 | jmax0 = (ps-((ii+1+offD)&(ps-1)))&(ps-1); |
| 496 | jmax0 = jmax<jmax0 ? jmax : jmax0; |
| 497 | offset = 0; |
| 498 | jj = 0; |
| 499 | if(jmax0>0) |
| 500 | { |
| 501 | for( ; jj<jmax0; jj++) |
| 502 | { |
| 503 | tmp = pC10[0+offset]; |
| 504 | beta += tmp*tmp; |
| 505 | offset += 1; |
| 506 | } |
| 507 | offset += -ps+ps*sdd; |
| 508 | } |
| 509 | for( ; jj<jmax-3; jj+=4) |
| 510 | { |
| 511 | tmp = pC10[0+offset]; |
| 512 | beta += tmp*tmp; |
| 513 | tmp = pC10[1+offset]; |
| 514 | beta += tmp*tmp; |
| 515 | tmp = pC10[2+offset]; |
| 516 | beta += tmp*tmp; |
| 517 | tmp = pC10[3+offset]; |
| 518 | beta += tmp*tmp; |
| 519 | offset += ps*sdd; |
| 520 | } |
| 521 | for(ll=0; ll<jmax-jj; ll++) |
| 522 | { |
| 523 | tmp = pC10[0+offset]; |
| 524 | beta += tmp*tmp; |
| 525 | offset += 1; |
| 526 | } |
| 527 | if(beta==0.0) |
| 528 | { |
| 529 | dD[ii] = 0.0; |
| 530 | } |
| 531 | else |
| 532 | { |
| 533 | alpha = pC00[0]; |
| 534 | beta += alpha*alpha; |
| 535 | beta = sqrt(beta); |
| 536 | if(alpha>0) |
| 537 | beta = -beta; |
| 538 | dD[ii] = (beta-alpha) / beta; |
| 539 | tmp = 1.0 / (alpha-beta); |
| 540 | offset = 0; |
| 541 | jj = 0; |
| 542 | if(jmax0>0) |
| 543 | { |
| 544 | for( ; jj<jmax0; jj++) |
| 545 | { |
| 546 | pC10[0+offset] *= tmp; |
| 547 | offset += 1; |
| 548 | } |
| 549 | offset += -ps+ps*sdd; |
| 550 | } |
| 551 | for( ; jj<jmax-3; jj+=4) |
| 552 | { |
| 553 | pC10[0+offset] *= tmp; |
| 554 | pC10[1+offset] *= tmp; |
| 555 | pC10[2+offset] *= tmp; |
| 556 | pC10[3+offset] *= tmp; |
| 557 | offset += ps*sdd; |
| 558 | } |
| 559 | for(ll=0; ll<jmax-jj; ll++) |
| 560 | { |
| 561 | pC10[0+offset] *= tmp; |
| 562 | offset += 1; |
| 563 | } |
| 564 | pC00[0] = beta; |
| 565 | } |
| 566 | if(ii<n) |
| 567 | { |
| 568 | pC01 = pC00 + ps; |
| 569 | pC11 = pC10 + ps; |
| 570 | kmax = jmax; |
| 571 | kmax0 = jmax0; |
| 572 | jmax = n-ii-1; |
| 573 | jj = 0; |
| 574 | for( ; jj<jmax; jj++) |
| 575 | { |
| 576 | w0 = pC01[0+ps*jj] * 1.0; |
| 577 | offset = 0; |
| 578 | kk = 0; |
| 579 | if(kmax0>0) |
| 580 | { |
| 581 | for( ; kk<kmax0; kk++) |
| 582 | { |
| 583 | w0 += pC11[0+offset+ps*jj] * pC10[0+offset]; |
| 584 | offset += 1; |
| 585 | } |
| 586 | offset += -ps+ps*sdd; |
| 587 | } |
| 588 | for( ; kk<kmax-3; kk+=4) |
| 589 | { |
| 590 | w0 += pC11[0+offset+ps*jj] * pC10[0+offset]; |
| 591 | w0 += pC11[1+offset+ps*jj] * pC10[1+offset]; |
| 592 | w0 += pC11[2+offset+ps*jj] * pC10[2+offset]; |
| 593 | w0 += pC11[3+offset+ps*jj] * pC10[3+offset]; |
| 594 | offset += ps*sdd; |
| 595 | } |
| 596 | for(ll=0; ll<kmax-kk; ll++) |
| 597 | { |
| 598 | w0 += pC11[0+offset+ps*jj] * pC10[0+offset]; |
| 599 | offset += 1; |
| 600 | } |
| 601 | w0 = - dD[ii] * w0; |
| 602 | pC01[0+ps*jj] += w0; |
| 603 | offset = 0; |
| 604 | kk = 0; |
| 605 | if(kmax0>0) |
| 606 | { |
| 607 | for( ; kk<kmax0; kk++) |
| 608 | { |
| 609 | pC11[0+offset+ps*jj] += w0 * pC10[0+offset]; |
| 610 | offset += 1; |
| 611 | } |
| 612 | offset = offset-ps+ps*sdd; |
| 613 | } |
| 614 | for( ; kk<kmax-3; kk+=4) |
| 615 | { |
| 616 | pC11[0+offset+ps*jj] += w0 * pC10[0+offset]; |
| 617 | pC11[1+offset+ps*jj] += w0 * pC10[1+offset]; |
| 618 | pC11[2+offset+ps*jj] += w0 * pC10[2+offset]; |
| 619 | pC11[3+offset+ps*jj] += w0 * pC10[3+offset]; |
| 620 | offset += ps*sdd; |
| 621 | } |
| 622 | for(ll=0; ll<kmax-kk; ll++) |
| 623 | { |
| 624 | pC11[0+offset+ps*jj] += w0 * pC10[0+offset]; |
| 625 | offset += 1; |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | } |
| 630 | return; |
| 631 | } |
| 632 | |
| 633 | |
| 634 | |
| 635 | void kernel_dlarf_4_lib4(int m, int n, double *pD, int sdd, double *dD, double *pC0, int sdc) |
| 636 | { |
| 637 | if(m<=0 | n<=0) |
| 638 | return; |
| 639 | int ii, jj, ll; |
| 640 | const int ps = 4; |
| 641 | double v10, |
| 642 | v20, v21, |
| 643 | v30, v31, v32; |
| 644 | double tmp, d0, d1, d2, d3; |
| 645 | double *pC; |
| 646 | double pT[16];// = {}; |
| 647 | int ldt = 4; |
| 648 | double pW[8];// = {}; |
| 649 | int ldw = 2; |
| 650 | // dot product of v |
| 651 | v10 = 0.0; |
| 652 | v20 = 0.0; |
| 653 | v30 = 0.0; |
| 654 | v21 = 0.0; |
| 655 | v31 = 0.0; |
| 656 | v32 = 0.0; |
| 657 | if(m>1) |
| 658 | { |
| 659 | v10 = 1.0 * pD[1+ps*0]; |
| 660 | if(m>2) |
| 661 | { |
| 662 | v10 += pD[2+ps*1] * pD[2+ps*0]; |
| 663 | v20 = 1.0 * pD[2+ps*0]; |
| 664 | v21 = 1.0 * pD[2+ps*1]; |
| 665 | if(m>3) |
| 666 | { |
| 667 | v10 += pD[3+ps*1] * pD[3+ps*0]; |
| 668 | v20 += pD[3+ps*2] * pD[3+ps*0]; |
| 669 | v21 += pD[3+ps*2] * pD[3+ps*1]; |
| 670 | v30 = 1.0 * pD[3+ps*0]; |
| 671 | v31 = 1.0 * pD[3+ps*1]; |
| 672 | v32 = 1.0 * pD[3+ps*2]; |
| 673 | } |
| 674 | } |
| 675 | } |
| 676 | for(ii=4; ii<m-3; ii+=4) |
| 677 | { |
| 678 | v10 += pD[0+ii*sdd+ps*1] * pD[0+ii*sdd+ps*0]; |
| 679 | v20 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*0]; |
| 680 | v21 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*1]; |
| 681 | v30 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*0]; |
| 682 | v31 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*1]; |
| 683 | v32 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*2]; |
| 684 | v10 += pD[1+ii*sdd+ps*1] * pD[1+ii*sdd+ps*0]; |
| 685 | v20 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*0]; |
| 686 | v21 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*1]; |
| 687 | v30 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*0]; |
| 688 | v31 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*1]; |
| 689 | v32 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*2]; |
| 690 | v10 += pD[2+ii*sdd+ps*1] * pD[2+ii*sdd+ps*0]; |
| 691 | v20 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*0]; |
| 692 | v21 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*1]; |
| 693 | v30 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*0]; |
| 694 | v31 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*1]; |
| 695 | v32 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*2]; |
| 696 | v10 += pD[3+ii*sdd+ps*1] * pD[3+ii*sdd+ps*0]; |
| 697 | v20 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*0]; |
| 698 | v21 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*1]; |
| 699 | v30 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*0]; |
| 700 | v31 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*1]; |
| 701 | v32 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*2]; |
| 702 | } |
| 703 | for(ll=0; ll<m-ii; ll++) |
| 704 | { |
| 705 | v10 += pD[ll+ii*sdd+ps*1] * pD[ll+ii*sdd+ps*0]; |
| 706 | v20 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*0]; |
| 707 | v21 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*1]; |
| 708 | v30 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*0]; |
| 709 | v31 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*1]; |
| 710 | v32 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*2]; |
| 711 | } |
| 712 | // compute lower triangular T containing tau for matrix update |
| 713 | pT[0+ldt*0] = dD[0]; |
| 714 | pT[1+ldt*1] = dD[1]; |
| 715 | pT[2+ldt*2] = dD[2]; |
| 716 | pT[3+ldt*3] = dD[3]; |
| 717 | pT[1+ldt*0] = - dD[1] * (v10*pT[0+ldt*0]); |
| 718 | pT[2+ldt*1] = - dD[2] * (v21*pT[1+ldt*1]); |
| 719 | pT[3+ldt*2] = - dD[3] * (v32*pT[2+ldt*2]); |
| 720 | pT[2+ldt*0] = - dD[2] * (v20*pT[0+ldt*0] + v21*pT[1+ldt*0]); |
| 721 | pT[3+ldt*1] = - dD[3] * (v31*pT[1+ldt*1] + v32*pT[2+ldt*1]); |
| 722 | pT[3+ldt*0] = - dD[3] * (v30*pT[0+ldt*0] + v31*pT[1+ldt*0] + v32*pT[2+ldt*0]); |
| 723 | // downgrade matrix |
| 724 | pW[0] = 0.0; |
| 725 | pW[1] = 0.0; |
| 726 | pW[2] = 0.0; |
| 727 | pW[3] = 0.0; |
| 728 | pW[4] = 0.0; |
| 729 | pW[5] = 0.0; |
| 730 | pW[6] = 0.0; |
| 731 | pW[7] = 0.0; |
| 732 | ii = 0; |
| 733 | for( ; ii<n-1; ii+=2) |
| 734 | { |
| 735 | pC = pC0+ii*ps; |
| 736 | // compute W^T = C^T * V |
| 737 | tmp = pC[0+ps*0]; |
| 738 | pW[0+ldw*0] = tmp; |
| 739 | tmp = pC[0+ps*1]; |
| 740 | pW[1+ldw*0] = tmp; |
| 741 | if(m>1) |
| 742 | { |
| 743 | d0 = pD[1+ps*0]; |
| 744 | tmp = pC[1+ps*0]; |
| 745 | pW[0+ldw*0] += tmp * d0; |
| 746 | pW[0+ldw*1] = tmp; |
| 747 | tmp = pC[1+ps*1]; |
| 748 | pW[1+ldw*0] += tmp * d0; |
| 749 | pW[1+ldw*1] = tmp; |
| 750 | if(m>2) |
| 751 | { |
| 752 | d0 = pD[2+ps*0]; |
| 753 | d1 = pD[2+ps*1]; |
| 754 | tmp = pC[2+ps*0]; |
| 755 | pW[0+ldw*0] += tmp * d0; |
| 756 | pW[0+ldw*1] += tmp * d1; |
| 757 | pW[0+ldw*2] = tmp; |
| 758 | tmp = pC[2+ps*1]; |
| 759 | pW[1+ldw*0] += tmp * d0; |
| 760 | pW[1+ldw*1] += tmp * d1; |
| 761 | pW[1+ldw*2] = tmp; |
| 762 | if(m>3) |
| 763 | { |
| 764 | d0 = pD[3+ps*0]; |
| 765 | d1 = pD[3+ps*1]; |
| 766 | d2 = pD[3+ps*2]; |
| 767 | tmp = pC[3+ps*0]; |
| 768 | pW[0+ldw*0] += tmp * d0; |
| 769 | pW[0+ldw*1] += tmp * d1; |
| 770 | pW[0+ldw*2] += tmp * d2; |
| 771 | pW[0+ldw*3] = tmp; |
| 772 | tmp = pC[3+ps*1]; |
| 773 | pW[1+ldw*0] += tmp * d0; |
| 774 | pW[1+ldw*1] += tmp * d1; |
| 775 | pW[1+ldw*2] += tmp * d2; |
| 776 | pW[1+ldw*3] = tmp; |
| 777 | } |
| 778 | } |
| 779 | } |
| 780 | for(jj=4; jj<m-3; jj+=4) |
| 781 | { |
| 782 | // |
| 783 | d0 = pD[0+jj*sdd+ps*0]; |
| 784 | d1 = pD[0+jj*sdd+ps*1]; |
| 785 | d2 = pD[0+jj*sdd+ps*2]; |
| 786 | d3 = pD[0+jj*sdd+ps*3]; |
| 787 | tmp = pC[0+jj*sdc+ps*0]; |
| 788 | pW[0+ldw*0] += tmp * d0; |
| 789 | pW[0+ldw*1] += tmp * d1; |
| 790 | pW[0+ldw*2] += tmp * d2; |
| 791 | pW[0+ldw*3] += tmp * d3; |
| 792 | tmp = pC[0+jj*sdc+ps*1]; |
| 793 | pW[1+ldw*0] += tmp * d0; |
| 794 | pW[1+ldw*1] += tmp * d1; |
| 795 | pW[1+ldw*2] += tmp * d2; |
| 796 | pW[1+ldw*3] += tmp * d3; |
| 797 | // |
| 798 | d0 = pD[1+jj*sdd+ps*0]; |
| 799 | d1 = pD[1+jj*sdd+ps*1]; |
| 800 | d2 = pD[1+jj*sdd+ps*2]; |
| 801 | d3 = pD[1+jj*sdd+ps*3]; |
| 802 | tmp = pC[1+jj*sdc+ps*0]; |
| 803 | pW[0+ldw*0] += tmp * d0; |
| 804 | pW[0+ldw*1] += tmp * d1; |
| 805 | pW[0+ldw*2] += tmp * d2; |
| 806 | pW[0+ldw*3] += tmp * d3; |
| 807 | tmp = pC[1+jj*sdc+ps*1]; |
| 808 | pW[1+ldw*0] += tmp * d0; |
| 809 | pW[1+ldw*1] += tmp * d1; |
| 810 | pW[1+ldw*2] += tmp * d2; |
| 811 | pW[1+ldw*3] += tmp * d3; |
| 812 | // |
| 813 | d0 = pD[2+jj*sdd+ps*0]; |
| 814 | d1 = pD[2+jj*sdd+ps*1]; |
| 815 | d2 = pD[2+jj*sdd+ps*2]; |
| 816 | d3 = pD[2+jj*sdd+ps*3]; |
| 817 | tmp = pC[2+jj*sdc+ps*0]; |
| 818 | pW[0+ldw*0] += tmp * d0; |
| 819 | pW[0+ldw*1] += tmp * d1; |
| 820 | pW[0+ldw*2] += tmp * d2; |
| 821 | pW[0+ldw*3] += tmp * d3; |
| 822 | tmp = pC[2+jj*sdc+ps*1]; |
| 823 | pW[1+ldw*0] += tmp * d0; |
| 824 | pW[1+ldw*1] += tmp * d1; |
| 825 | pW[1+ldw*2] += tmp * d2; |
| 826 | pW[1+ldw*3] += tmp * d3; |
| 827 | // |
| 828 | d0 = pD[3+jj*sdd+ps*0]; |
| 829 | d1 = pD[3+jj*sdd+ps*1]; |
| 830 | d2 = pD[3+jj*sdd+ps*2]; |
| 831 | d3 = pD[3+jj*sdd+ps*3]; |
| 832 | tmp = pC[3+jj*sdc+ps*0]; |
| 833 | pW[0+ldw*0] += tmp * d0; |
| 834 | pW[0+ldw*1] += tmp * d1; |
| 835 | pW[0+ldw*2] += tmp * d2; |
| 836 | pW[0+ldw*3] += tmp * d3; |
| 837 | tmp = pC[3+jj*sdc+ps*1]; |
| 838 | pW[1+ldw*0] += tmp * d0; |
| 839 | pW[1+ldw*1] += tmp * d1; |
| 840 | pW[1+ldw*2] += tmp * d2; |
| 841 | pW[1+ldw*3] += tmp * d3; |
| 842 | } |
| 843 | for(ll=0; ll<m-jj; ll++) |
| 844 | { |
| 845 | d0 = pD[ll+jj*sdd+ps*0]; |
| 846 | d1 = pD[ll+jj*sdd+ps*1]; |
| 847 | d2 = pD[ll+jj*sdd+ps*2]; |
| 848 | d3 = pD[ll+jj*sdd+ps*3]; |
| 849 | tmp = pC[ll+jj*sdc+ps*0]; |
| 850 | pW[0+ldw*0] += tmp * d0; |
| 851 | pW[0+ldw*1] += tmp * d1; |
| 852 | pW[0+ldw*2] += tmp * d2; |
| 853 | pW[0+ldw*3] += tmp * d3; |
| 854 | tmp = pC[ll+jj*sdc+ps*1]; |
| 855 | pW[1+ldw*0] += tmp * d0; |
| 856 | pW[1+ldw*1] += tmp * d1; |
| 857 | pW[1+ldw*2] += tmp * d2; |
| 858 | pW[1+ldw*3] += tmp * d3; |
| 859 | } |
| 860 | // compute W^T *= T |
| 861 | pW[0+ldw*3] = pT[3+ldt*0]*pW[0+ldw*0] + pT[3+ldt*1]*pW[0+ldw*1] + pT[3+ldt*2]*pW[0+ldw*2] + pT[3+ldt*3]*pW[0+ldw*3]; |
| 862 | pW[1+ldw*3] = pT[3+ldt*0]*pW[1+ldw*0] + pT[3+ldt*1]*pW[1+ldw*1] + pT[3+ldt*2]*pW[1+ldw*2] + pT[3+ldt*3]*pW[1+ldw*3]; |
| 863 | pW[0+ldw*2] = pT[2+ldt*0]*pW[0+ldw*0] + pT[2+ldt*1]*pW[0+ldw*1] + pT[2+ldt*2]*pW[0+ldw*2]; |
| 864 | pW[1+ldw*2] = pT[2+ldt*0]*pW[1+ldw*0] + pT[2+ldt*1]*pW[1+ldw*1] + pT[2+ldt*2]*pW[1+ldw*2]; |
| 865 | pW[0+ldw*1] = pT[1+ldt*0]*pW[0+ldw*0] + pT[1+ldt*1]*pW[0+ldw*1]; |
| 866 | pW[1+ldw*1] = pT[1+ldt*0]*pW[1+ldw*0] + pT[1+ldt*1]*pW[1+ldw*1]; |
| 867 | pW[0+ldw*0] = pT[0+ldt*0]*pW[0+ldw*0]; |
| 868 | pW[1+ldw*0] = pT[0+ldt*0]*pW[1+ldw*0]; |
| 869 | // compute C -= V * W^T |
| 870 | pC[0+ps*0] -= pW[0+ldw*0]; |
| 871 | pC[0+ps*1] -= pW[1+ldw*0]; |
| 872 | if(m>1) |
| 873 | { |
| 874 | pC[1+ps*0] -= pD[1+ps*0]*pW[0+ldw*0] + pW[0+ldw*1]; |
| 875 | pC[1+ps*1] -= pD[1+ps*0]*pW[1+ldw*0] + pW[1+ldw*1]; |
| 876 | if(m>2) |
| 877 | { |
| 878 | pC[2+ps*0] -= pD[2+ps*0]*pW[0+ldw*0] + pD[2+ps*1]*pW[0+ldw*1] + pW[0+ldw*2]; |
| 879 | pC[2+ps*1] -= pD[2+ps*0]*pW[1+ldw*0] + pD[2+ps*1]*pW[1+ldw*1] + pW[1+ldw*2]; |
| 880 | if(m>3) |
| 881 | { |
| 882 | pC[3+ps*0] -= pD[3+ps*0]*pW[0+ldw*0] + pD[3+ps*1]*pW[0+ldw*1] + pD[3+ps*2]*pW[0+ldw*2] + pW[0+ldw*3]; |
| 883 | pC[3+ps*1] -= pD[3+ps*0]*pW[1+ldw*0] + pD[3+ps*1]*pW[1+ldw*1] + pD[3+ps*2]*pW[1+ldw*2] + pW[1+ldw*3]; |
| 884 | } |
| 885 | } |
| 886 | } |
| 887 | for(jj=4; jj<m-3; jj+=4) |
| 888 | { |
| 889 | // |
| 890 | d0 = pD[0+jj*sdd+ps*0]; |
| 891 | d1 = pD[0+jj*sdd+ps*1]; |
| 892 | d2 = pD[0+jj*sdd+ps*2]; |
| 893 | d3 = pD[0+jj*sdd+ps*3]; |
| 894 | pC[0+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 895 | pC[0+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 896 | // |
| 897 | d0 = pD[1+jj*sdd+ps*0]; |
| 898 | d1 = pD[1+jj*sdd+ps*1]; |
| 899 | d2 = pD[1+jj*sdd+ps*2]; |
| 900 | d3 = pD[1+jj*sdd+ps*3]; |
| 901 | pC[1+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 902 | pC[1+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 903 | // |
| 904 | d0 = pD[2+jj*sdd+ps*0]; |
| 905 | d1 = pD[2+jj*sdd+ps*1]; |
| 906 | d2 = pD[2+jj*sdd+ps*2]; |
| 907 | d3 = pD[2+jj*sdd+ps*3]; |
| 908 | pC[2+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 909 | pC[2+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 910 | // |
| 911 | d0 = pD[3+jj*sdd+ps*0]; |
| 912 | d1 = pD[3+jj*sdd+ps*1]; |
| 913 | d2 = pD[3+jj*sdd+ps*2]; |
| 914 | d3 = pD[3+jj*sdd+ps*3]; |
| 915 | pC[3+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 916 | pC[3+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 917 | } |
| 918 | for(ll=0; ll<m-jj; ll++) |
| 919 | { |
| 920 | d0 = pD[ll+jj*sdd+ps*0]; |
| 921 | d1 = pD[ll+jj*sdd+ps*1]; |
| 922 | d2 = pD[ll+jj*sdd+ps*2]; |
| 923 | d3 = pD[ll+jj*sdd+ps*3]; |
| 924 | pC[ll+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 925 | pC[ll+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 926 | } |
| 927 | } |
| 928 | for( ; ii<n; ii++) |
| 929 | { |
| 930 | pC = pC0+ii*ps; |
| 931 | // compute W^T = C^T * V |
| 932 | tmp = pC[0+ps*0]; |
| 933 | pW[0+ldw*0] = tmp; |
| 934 | if(m>1) |
| 935 | { |
| 936 | tmp = pC[1+ps*0]; |
| 937 | pW[0+ldw*0] += tmp * pD[1+ps*0]; |
| 938 | pW[0+ldw*1] = tmp; |
| 939 | if(m>2) |
| 940 | { |
| 941 | tmp = pC[2+ps*0]; |
| 942 | pW[0+ldw*0] += tmp * pD[2+ps*0]; |
| 943 | pW[0+ldw*1] += tmp * pD[2+ps*1]; |
| 944 | pW[0+ldw*2] = tmp; |
| 945 | if(m>3) |
| 946 | { |
| 947 | tmp = pC[3+ps*0]; |
| 948 | pW[0+ldw*0] += tmp * pD[3+ps*0]; |
| 949 | pW[0+ldw*1] += tmp * pD[3+ps*1]; |
| 950 | pW[0+ldw*2] += tmp * pD[3+ps*2]; |
| 951 | pW[0+ldw*3] = tmp; |
| 952 | } |
| 953 | } |
| 954 | } |
| 955 | for(jj=4; jj<m-3; jj+=4) |
| 956 | { |
| 957 | tmp = pC[0+jj*sdc+ps*0]; |
| 958 | pW[0+ldw*0] += tmp * pD[0+jj*sdd+ps*0]; |
| 959 | pW[0+ldw*1] += tmp * pD[0+jj*sdd+ps*1]; |
| 960 | pW[0+ldw*2] += tmp * pD[0+jj*sdd+ps*2]; |
| 961 | pW[0+ldw*3] += tmp * pD[0+jj*sdd+ps*3]; |
| 962 | tmp = pC[1+jj*sdc+ps*0]; |
| 963 | pW[0+ldw*0] += tmp * pD[1+jj*sdd+ps*0]; |
| 964 | pW[0+ldw*1] += tmp * pD[1+jj*sdd+ps*1]; |
| 965 | pW[0+ldw*2] += tmp * pD[1+jj*sdd+ps*2]; |
| 966 | pW[0+ldw*3] += tmp * pD[1+jj*sdd+ps*3]; |
| 967 | tmp = pC[2+jj*sdc+ps*0]; |
| 968 | pW[0+ldw*0] += tmp * pD[2+jj*sdd+ps*0]; |
| 969 | pW[0+ldw*1] += tmp * pD[2+jj*sdd+ps*1]; |
| 970 | pW[0+ldw*2] += tmp * pD[2+jj*sdd+ps*2]; |
| 971 | pW[0+ldw*3] += tmp * pD[2+jj*sdd+ps*3]; |
| 972 | tmp = pC[3+jj*sdc+ps*0]; |
| 973 | pW[0+ldw*0] += tmp * pD[3+jj*sdd+ps*0]; |
| 974 | pW[0+ldw*1] += tmp * pD[3+jj*sdd+ps*1]; |
| 975 | pW[0+ldw*2] += tmp * pD[3+jj*sdd+ps*2]; |
| 976 | pW[0+ldw*3] += tmp * pD[3+jj*sdd+ps*3]; |
| 977 | } |
| 978 | for(ll=0; ll<m-jj; ll++) |
| 979 | { |
| 980 | tmp = pC[ll+jj*sdc+ps*0]; |
| 981 | pW[0+ldw*0] += tmp * pD[ll+jj*sdd+ps*0]; |
| 982 | pW[0+ldw*1] += tmp * pD[ll+jj*sdd+ps*1]; |
| 983 | pW[0+ldw*2] += tmp * pD[ll+jj*sdd+ps*2]; |
| 984 | pW[0+ldw*3] += tmp * pD[ll+jj*sdd+ps*3]; |
| 985 | } |
| 986 | // compute W^T *= T |
| 987 | pW[0+ldw*3] = pT[3+ldt*0]*pW[0+ldw*0] + pT[3+ldt*1]*pW[0+ldw*1] + pT[3+ldt*2]*pW[0+ldw*2] + pT[3+ldt*3]*pW[0+ldw*3]; |
| 988 | pW[0+ldw*2] = pT[2+ldt*0]*pW[0+ldw*0] + pT[2+ldt*1]*pW[0+ldw*1] + pT[2+ldt*2]*pW[0+ldw*2]; |
| 989 | pW[0+ldw*1] = pT[1+ldt*0]*pW[0+ldw*0] + pT[1+ldt*1]*pW[0+ldw*1]; |
| 990 | pW[0+ldw*0] = pT[0+ldt*0]*pW[0+ldw*0]; |
| 991 | // compute C -= V * W^T |
| 992 | pC[0+ps*0] -= pW[0+ldw*0]; |
| 993 | if(m>1) |
| 994 | { |
| 995 | pC[1+ps*0] -= pD[1+ps*0]*pW[0+ldw*0] + pW[0+ldw*1]; |
| 996 | if(m>2) |
| 997 | { |
| 998 | pC[2+ps*0] -= pD[2+ps*0]*pW[0+ldw*0] + pD[2+ps*1]*pW[0+ldw*1] + pW[0+ldw*2]; |
| 999 | if(m>3) |
| 1000 | { |
| 1001 | pC[3+ps*0] -= pD[3+ps*0]*pW[0+ldw*0] + pD[3+ps*1]*pW[0+ldw*1] + pD[3+ps*2]*pW[0+ldw*2] + pW[0+ldw*3]; |
| 1002 | } |
| 1003 | } |
| 1004 | } |
| 1005 | for(jj=4; jj<m-3; jj+=4) |
| 1006 | { |
| 1007 | pC[0+jj*sdc+ps*0] -= pD[0+jj*sdd+ps*0]*pW[0+ldw*0] + pD[0+jj*sdd+ps*1]*pW[0+ldw*1] + pD[0+jj*sdd+ps*2]*pW[0+ldw*2] + pD[0+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1008 | pC[1+jj*sdc+ps*0] -= pD[1+jj*sdd+ps*0]*pW[0+ldw*0] + pD[1+jj*sdd+ps*1]*pW[0+ldw*1] + pD[1+jj*sdd+ps*2]*pW[0+ldw*2] + pD[1+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1009 | pC[2+jj*sdc+ps*0] -= pD[2+jj*sdd+ps*0]*pW[0+ldw*0] + pD[2+jj*sdd+ps*1]*pW[0+ldw*1] + pD[2+jj*sdd+ps*2]*pW[0+ldw*2] + pD[2+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1010 | pC[3+jj*sdc+ps*0] -= pD[3+jj*sdd+ps*0]*pW[0+ldw*0] + pD[3+jj*sdd+ps*1]*pW[0+ldw*1] + pD[3+jj*sdd+ps*2]*pW[0+ldw*2] + pD[3+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1011 | } |
| 1012 | for(ll=0; ll<m-jj; ll++) |
| 1013 | { |
| 1014 | pC[ll+jj*sdc+ps*0] -= pD[ll+jj*sdd+ps*0]*pW[0+ldw*0] + pD[ll+jj*sdd+ps*1]*pW[0+ldw*1] + pD[ll+jj*sdd+ps*2]*pW[0+ldw*2] + pD[ll+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | return; |
| 1019 | } |
| 1020 | |
| 1021 | |
| 1022 | |
| 1023 | void kernel_dlarf_t_4_lib4(int m, int n, double *pD, int sdd, double *pVt, double *dD, double *pC0, int sdc) |
| 1024 | { |
| 1025 | if(m<=0 | n<=0) |
| 1026 | return; |
| 1027 | int ii, jj, ll; |
| 1028 | const int ps = 4; |
| 1029 | double v10, |
| 1030 | v20, v21, |
| 1031 | v30, v31, v32; |
| 1032 | double c00, c01, |
| 1033 | c10, c11, |
| 1034 | c20, c21, |
| 1035 | c30, c31; |
| 1036 | double a0, a1, a2, a3, b0, b1; |
| 1037 | double tmp, d0, d1, d2, d3; |
| 1038 | double *pC; |
| 1039 | double pT[16];// = {}; |
| 1040 | int ldt = 4; |
| 1041 | double pW[8];// = {}; |
| 1042 | int ldw = 4; |
| 1043 | // dot product of v |
| 1044 | v10 = 0.0; |
| 1045 | v20 = 0.0; |
| 1046 | v30 = 0.0; |
| 1047 | v21 = 0.0; |
| 1048 | v31 = 0.0; |
| 1049 | v32 = 0.0; |
| 1050 | if(m>1) |
| 1051 | { |
| 1052 | v10 = 1.0 * pD[1+ps*0]; |
| 1053 | if(m>2) |
| 1054 | { |
| 1055 | v10 += pD[2+ps*1] * pD[2+ps*0]; |
| 1056 | v20 = 1.0 * pD[2+ps*0]; |
| 1057 | v21 = 1.0 * pD[2+ps*1]; |
| 1058 | if(m>3) |
| 1059 | { |
| 1060 | v10 += pD[3+ps*1] * pD[3+ps*0]; |
| 1061 | v20 += pD[3+ps*2] * pD[3+ps*0]; |
| 1062 | v21 += pD[3+ps*2] * pD[3+ps*1]; |
| 1063 | v30 = 1.0 * pD[3+ps*0]; |
| 1064 | v31 = 1.0 * pD[3+ps*1]; |
| 1065 | v32 = 1.0 * pD[3+ps*2]; |
| 1066 | } |
| 1067 | } |
| 1068 | } |
| 1069 | for(ii=4; ii<m-3; ii+=4) |
| 1070 | { |
| 1071 | v10 += pD[0+ii*sdd+ps*1] * pD[0+ii*sdd+ps*0]; |
| 1072 | v20 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*0]; |
| 1073 | v21 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*1]; |
| 1074 | v30 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*0]; |
| 1075 | v31 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*1]; |
| 1076 | v32 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*2]; |
| 1077 | v10 += pD[1+ii*sdd+ps*1] * pD[1+ii*sdd+ps*0]; |
| 1078 | v20 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*0]; |
| 1079 | v21 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*1]; |
| 1080 | v30 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*0]; |
| 1081 | v31 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*1]; |
| 1082 | v32 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*2]; |
| 1083 | v10 += pD[2+ii*sdd+ps*1] * pD[2+ii*sdd+ps*0]; |
| 1084 | v20 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*0]; |
| 1085 | v21 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*1]; |
| 1086 | v30 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*0]; |
| 1087 | v31 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*1]; |
| 1088 | v32 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*2]; |
| 1089 | v10 += pD[3+ii*sdd+ps*1] * pD[3+ii*sdd+ps*0]; |
| 1090 | v20 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*0]; |
| 1091 | v21 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*1]; |
| 1092 | v30 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*0]; |
| 1093 | v31 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*1]; |
| 1094 | v32 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*2]; |
| 1095 | } |
| 1096 | for(ll=0; ll<m-ii; ll++) |
| 1097 | { |
| 1098 | v10 += pD[ll+ii*sdd+ps*1] * pD[ll+ii*sdd+ps*0]; |
| 1099 | v20 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*0]; |
| 1100 | v21 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*1]; |
| 1101 | v30 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*0]; |
| 1102 | v31 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*1]; |
| 1103 | v32 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*2]; |
| 1104 | } |
| 1105 | // compute lower triangular T containing tau for matrix update |
| 1106 | pT[0+ldt*0] = dD[0]; |
| 1107 | pT[1+ldt*1] = dD[1]; |
| 1108 | pT[2+ldt*2] = dD[2]; |
| 1109 | pT[3+ldt*3] = dD[3]; |
| 1110 | pT[1+ldt*0] = - dD[1] * (v10*pT[0+ldt*0]); |
| 1111 | pT[2+ldt*1] = - dD[2] * (v21*pT[1+ldt*1]); |
| 1112 | pT[3+ldt*2] = - dD[3] * (v32*pT[2+ldt*2]); |
| 1113 | pT[2+ldt*0] = - dD[2] * (v20*pT[0+ldt*0] + v21*pT[1+ldt*0]); |
| 1114 | pT[3+ldt*1] = - dD[3] * (v31*pT[1+ldt*1] + v32*pT[2+ldt*1]); |
| 1115 | pT[3+ldt*0] = - dD[3] * (v30*pT[0+ldt*0] + v31*pT[1+ldt*0] + v32*pT[2+ldt*0]); |
| 1116 | // downgrade matrix |
| 1117 | pW[0] = 0.0; |
| 1118 | pW[1] = 0.0; |
| 1119 | pW[2] = 0.0; |
| 1120 | pW[3] = 0.0; |
| 1121 | pW[4] = 0.0; |
| 1122 | pW[5] = 0.0; |
| 1123 | pW[6] = 0.0; |
| 1124 | pW[7] = 0.0; |
| 1125 | ii = 0; |
| 1126 | for( ; ii<n-1; ii+=2) |
| 1127 | { |
| 1128 | pC = pC0+ii*ps; |
| 1129 | // compute W^T = C^T * V |
| 1130 | tmp = pC[0+ps*0]; |
| 1131 | pW[0+ldw*0] = tmp; |
| 1132 | tmp = pC[0+ps*1]; |
| 1133 | pW[0+ldw*1] = tmp; |
| 1134 | if(m>1) |
| 1135 | { |
| 1136 | d0 = pVt[0+ps*1]; |
| 1137 | tmp = pC[1+ps*0]; |
| 1138 | pW[0+ldw*0] += d0 * tmp; |
| 1139 | pW[1+ldw*0] = tmp; |
| 1140 | tmp = pC[1+ps*1]; |
| 1141 | pW[0+ldw*1] += d0 * tmp; |
| 1142 | pW[1+ldw*1] = tmp; |
| 1143 | if(m>2) |
| 1144 | { |
| 1145 | d0 = pVt[0+ps*2]; |
| 1146 | d1 = pVt[1+ps*2]; |
| 1147 | tmp = pC[2+ps*0]; |
| 1148 | pW[0+ldw*0] += d0 * tmp; |
| 1149 | pW[1+ldw*0] += d1 * tmp; |
| 1150 | pW[2+ldw*0] = tmp; |
| 1151 | tmp = pC[2+ps*1]; |
| 1152 | pW[0+ldw*1] += d0 * tmp; |
| 1153 | pW[1+ldw*1] += d1 * tmp; |
| 1154 | pW[2+ldw*1] = tmp; |
| 1155 | if(m>3) |
| 1156 | { |
| 1157 | d0 = pVt[0+ps*3]; |
| 1158 | d1 = pVt[1+ps*3]; |
| 1159 | d2 = pVt[2+ps*3]; |
| 1160 | tmp = pC[3+ps*0]; |
| 1161 | pW[0+ldw*0] += d0 * tmp; |
| 1162 | pW[1+ldw*0] += d1 * tmp; |
| 1163 | pW[2+ldw*0] += d2 * tmp; |
| 1164 | pW[3+ldw*0] = tmp; |
| 1165 | tmp = pC[3+ps*1]; |
| 1166 | pW[0+ldw*1] += d0 * tmp; |
| 1167 | pW[1+ldw*1] += d1 * tmp; |
| 1168 | pW[2+ldw*1] += d2 * tmp; |
| 1169 | pW[3+ldw*1] = tmp; |
| 1170 | } |
| 1171 | } |
| 1172 | } |
| 1173 | for(jj=4; jj<m-3; jj+=4) |
| 1174 | { |
| 1175 | // |
| 1176 | d0 = pVt[0+ps*(0+jj)]; |
| 1177 | d1 = pVt[1+ps*(0+jj)]; |
| 1178 | d2 = pVt[2+ps*(0+jj)]; |
| 1179 | d3 = pVt[3+ps*(0+jj)]; |
| 1180 | tmp = pC[0+jj*sdc+ps*0]; |
| 1181 | pW[0+ldw*0] += d0 * tmp; |
| 1182 | pW[1+ldw*0] += d1 * tmp; |
| 1183 | pW[2+ldw*0] += d2 * tmp; |
| 1184 | pW[3+ldw*0] += d3 * tmp; |
| 1185 | tmp = pC[0+jj*sdc+ps*1]; |
| 1186 | pW[0+ldw*1] += d0 * tmp; |
| 1187 | pW[1+ldw*1] += d1 * tmp; |
| 1188 | pW[2+ldw*1] += d2 * tmp; |
| 1189 | pW[3+ldw*1] += d3 * tmp; |
| 1190 | // |
| 1191 | d0 = pVt[0+ps*(1+jj)]; |
| 1192 | d1 = pVt[1+ps*(1+jj)]; |
| 1193 | d2 = pVt[2+ps*(1+jj)]; |
| 1194 | d3 = pVt[3+ps*(1+jj)]; |
| 1195 | tmp = pC[1+jj*sdc+ps*0]; |
| 1196 | pW[0+ldw*0] += d0 * tmp; |
| 1197 | pW[1+ldw*0] += d1 * tmp; |
| 1198 | pW[2+ldw*0] += d2 * tmp; |
| 1199 | pW[3+ldw*0] += d3 * tmp; |
| 1200 | tmp = pC[1+jj*sdc+ps*1]; |
| 1201 | pW[0+ldw*1] += d0 * tmp; |
| 1202 | pW[1+ldw*1] += d1 * tmp; |
| 1203 | pW[2+ldw*1] += d2 * tmp; |
| 1204 | pW[3+ldw*1] += d3 * tmp; |
| 1205 | // |
| 1206 | d0 = pVt[0+ps*(2+jj)]; |
| 1207 | d1 = pVt[1+ps*(2+jj)]; |
| 1208 | d2 = pVt[2+ps*(2+jj)]; |
| 1209 | d3 = pVt[3+ps*(2+jj)]; |
| 1210 | tmp = pC[2+jj*sdc+ps*0]; |
| 1211 | pW[0+ldw*0] += d0 * tmp; |
| 1212 | pW[1+ldw*0] += d1 * tmp; |
| 1213 | pW[2+ldw*0] += d2 * tmp; |
| 1214 | pW[3+ldw*0] += d3 * tmp; |
| 1215 | tmp = pC[2+jj*sdc+ps*1]; |
| 1216 | pW[0+ldw*1] += d0 * tmp; |
| 1217 | pW[1+ldw*1] += d1 * tmp; |
| 1218 | pW[2+ldw*1] += d2 * tmp; |
| 1219 | pW[3+ldw*1] += d3 * tmp; |
| 1220 | // |
| 1221 | d0 = pVt[0+ps*(3+jj)]; |
| 1222 | d1 = pVt[1+ps*(3+jj)]; |
| 1223 | d2 = pVt[2+ps*(3+jj)]; |
| 1224 | d3 = pVt[3+ps*(3+jj)]; |
| 1225 | tmp = pC[3+jj*sdc+ps*0]; |
| 1226 | pW[0+ldw*0] += d0 * tmp; |
| 1227 | pW[1+ldw*0] += d1 * tmp; |
| 1228 | pW[2+ldw*0] += d2 * tmp; |
| 1229 | pW[3+ldw*0] += d3 * tmp; |
| 1230 | tmp = pC[3+jj*sdc+ps*1]; |
| 1231 | pW[0+ldw*1] += d0 * tmp; |
| 1232 | pW[1+ldw*1] += d1 * tmp; |
| 1233 | pW[2+ldw*1] += d2 * tmp; |
| 1234 | pW[3+ldw*1] += d3 * tmp; |
| 1235 | } |
| 1236 | for(ll=0; ll<m-jj; ll++) |
| 1237 | { |
| 1238 | d0 = pVt[0+ps*(ll+jj)]; |
| 1239 | d1 = pVt[1+ps*(ll+jj)]; |
| 1240 | d2 = pVt[2+ps*(ll+jj)]; |
| 1241 | d3 = pVt[3+ps*(ll+jj)]; |
| 1242 | tmp = pC[ll+jj*sdc+ps*0]; |
| 1243 | pW[0+ldw*0] += d0 * tmp; |
| 1244 | pW[1+ldw*0] += d1 * tmp; |
| 1245 | pW[2+ldw*0] += d2 * tmp; |
| 1246 | pW[3+ldw*0] += d3 * tmp; |
| 1247 | tmp = pC[ll+jj*sdc+ps*1]; |
| 1248 | pW[0+ldw*1] += d0 * tmp; |
| 1249 | pW[1+ldw*1] += d1 * tmp; |
| 1250 | pW[2+ldw*1] += d2 * tmp; |
| 1251 | pW[3+ldw*1] += d3 * tmp; |
| 1252 | } |
| 1253 | // compute W^T *= T |
| 1254 | pW[3+ldw*0] = pT[3+ldt*0]*pW[0+ldw*0] + pT[3+ldt*1]*pW[1+ldw*0] + pT[3+ldt*2]*pW[2+ldw*0] + pT[3+ldt*3]*pW[3+ldw*0]; |
| 1255 | pW[3+ldw*1] = pT[3+ldt*0]*pW[0+ldw*1] + pT[3+ldt*1]*pW[1+ldw*1] + pT[3+ldt*2]*pW[2+ldw*1] + pT[3+ldt*3]*pW[3+ldw*1]; |
| 1256 | pW[2+ldw*0] = pT[2+ldt*0]*pW[0+ldw*0] + pT[2+ldt*1]*pW[1+ldw*0] + pT[2+ldt*2]*pW[2+ldw*0]; |
| 1257 | pW[2+ldw*1] = pT[2+ldt*0]*pW[0+ldw*1] + pT[2+ldt*1]*pW[1+ldw*1] + pT[2+ldt*2]*pW[2+ldw*1]; |
| 1258 | pW[1+ldw*0] = pT[1+ldt*0]*pW[0+ldw*0] + pT[1+ldt*1]*pW[1+ldw*0]; |
| 1259 | pW[1+ldw*1] = pT[1+ldt*0]*pW[0+ldw*1] + pT[1+ldt*1]*pW[1+ldw*1]; |
| 1260 | pW[0+ldw*0] = pT[0+ldt*0]*pW[0+ldw*0]; |
| 1261 | pW[0+ldw*1] = pT[0+ldt*0]*pW[0+ldw*1]; |
| 1262 | // compute C -= V * W^T |
| 1263 | jj = 0; |
| 1264 | // load |
| 1265 | c00 = pC[0+jj*sdc+ps*0]; |
| 1266 | c10 = pC[1+jj*sdc+ps*0]; |
| 1267 | c20 = pC[2+jj*sdc+ps*0]; |
| 1268 | c30 = pC[3+jj*sdc+ps*0]; |
| 1269 | c01 = pC[0+jj*sdc+ps*1]; |
| 1270 | c11 = pC[1+jj*sdc+ps*1]; |
| 1271 | c21 = pC[2+jj*sdc+ps*1]; |
| 1272 | c31 = pC[3+jj*sdc+ps*1]; |
| 1273 | // rank1 |
| 1274 | a1 = pD[1+jj*sdd+ps*0]; |
| 1275 | a2 = pD[2+jj*sdd+ps*0]; |
| 1276 | a3 = pD[3+jj*sdd+ps*0]; |
| 1277 | b0 = pW[0+ldw*0]; |
| 1278 | c00 -= b0; |
| 1279 | c10 -= a1*b0; |
| 1280 | c20 -= a2*b0; |
| 1281 | c30 -= a3*b0; |
| 1282 | b1 = pW[0+ldw*1]; |
| 1283 | c01 -= b1; |
| 1284 | c11 -= a1*b1; |
| 1285 | c21 -= a2*b1; |
| 1286 | c31 -= a3*b1; |
| 1287 | // rank2 |
| 1288 | a2 = pD[2+jj*sdd+ps*1]; |
| 1289 | a3 = pD[3+jj*sdd+ps*1]; |
| 1290 | b0 = pW[1+ldw*0]; |
| 1291 | c10 -= b0; |
| 1292 | c20 -= a2*b0; |
| 1293 | c30 -= a3*b0; |
| 1294 | b1 = pW[1+ldw*1]; |
| 1295 | c11 -= b1; |
| 1296 | c21 -= a2*b1; |
| 1297 | c31 -= a3*b1; |
| 1298 | // rank3 |
| 1299 | a3 = pD[3+jj*sdd+ps*2]; |
| 1300 | b0 = pW[2+ldw*0]; |
| 1301 | c20 -= b0; |
| 1302 | c30 -= a3*b0; |
| 1303 | b1 = pW[2+ldw*1]; |
| 1304 | c21 -= b1; |
| 1305 | c31 -= a3*b1; |
| 1306 | // rank4 |
| 1307 | a3 = pD[3+jj*sdd+ps*3]; |
| 1308 | b0 = pW[3+ldw*0]; |
| 1309 | c30 -= b0; |
| 1310 | b1 = pW[3+ldw*1]; |
| 1311 | c31 -= b1; |
| 1312 | // store |
| 1313 | pC[0+jj*sdc+ps*0] = c00; |
| 1314 | pC[0+jj*sdc+ps*1] = c01; |
| 1315 | if(m>1) |
| 1316 | { |
| 1317 | pC[1+jj*sdc+ps*0] = c10; |
| 1318 | pC[1+jj*sdc+ps*1] = c11; |
| 1319 | if(m>2) |
| 1320 | { |
| 1321 | pC[2+jj*sdc+ps*0] = c20; |
| 1322 | pC[2+jj*sdc+ps*1] = c21; |
| 1323 | if(m>3) |
| 1324 | { |
| 1325 | pC[3+jj*sdc+ps*0] = c30; |
| 1326 | pC[3+jj*sdc+ps*1] = c31; |
| 1327 | } |
| 1328 | } |
| 1329 | } |
| 1330 | for(jj=4; jj<m-3; jj+=4) |
| 1331 | { |
| 1332 | // load |
| 1333 | c00 = pC[0+jj*sdc+ps*0]; |
| 1334 | c10 = pC[1+jj*sdc+ps*0]; |
| 1335 | c20 = pC[2+jj*sdc+ps*0]; |
| 1336 | c30 = pC[3+jj*sdc+ps*0]; |
| 1337 | c01 = pC[0+jj*sdc+ps*1]; |
| 1338 | c11 = pC[1+jj*sdc+ps*1]; |
| 1339 | c21 = pC[2+jj*sdc+ps*1]; |
| 1340 | c31 = pC[3+jj*sdc+ps*1]; |
| 1341 | // |
| 1342 | a0 = pD[0+jj*sdd+ps*0]; |
| 1343 | a1 = pD[1+jj*sdd+ps*0]; |
| 1344 | a2 = pD[2+jj*sdd+ps*0]; |
| 1345 | a3 = pD[3+jj*sdd+ps*0]; |
| 1346 | b0 = pW[0+ldw*0]; |
| 1347 | c00 -= a0*b0; |
| 1348 | c10 -= a1*b0; |
| 1349 | c20 -= a2*b0; |
| 1350 | c30 -= a3*b0; |
| 1351 | b1 = pW[0+ldw*1]; |
| 1352 | c01 -= a0*b1; |
| 1353 | c11 -= a1*b1; |
| 1354 | c21 -= a2*b1; |
| 1355 | c31 -= a3*b1; |
| 1356 | // |
| 1357 | a0 = pD[0+jj*sdd+ps*1]; |
| 1358 | a1 = pD[1+jj*sdd+ps*1]; |
| 1359 | a2 = pD[2+jj*sdd+ps*1]; |
| 1360 | a3 = pD[3+jj*sdd+ps*1]; |
| 1361 | b0 = pW[1+ldw*0]; |
| 1362 | c00 -= a0*b0; |
| 1363 | c10 -= a1*b0; |
| 1364 | c20 -= a2*b0; |
| 1365 | c30 -= a3*b0; |
| 1366 | b1 = pW[1+ldw*1]; |
| 1367 | c01 -= a0*b1; |
| 1368 | c11 -= a1*b1; |
| 1369 | c21 -= a2*b1; |
| 1370 | c31 -= a3*b1; |
| 1371 | // |
| 1372 | a0 = pD[0+jj*sdd+ps*2]; |
| 1373 | a1 = pD[1+jj*sdd+ps*2]; |
| 1374 | a2 = pD[2+jj*sdd+ps*2]; |
| 1375 | a3 = pD[3+jj*sdd+ps*2]; |
| 1376 | b0 = pW[2+ldw*0]; |
| 1377 | c00 -= a0*b0; |
| 1378 | c10 -= a1*b0; |
| 1379 | c20 -= a2*b0; |
| 1380 | c30 -= a3*b0; |
| 1381 | b1 = pW[2+ldw*1]; |
| 1382 | c01 -= a0*b1; |
| 1383 | c11 -= a1*b1; |
| 1384 | c21 -= a2*b1; |
| 1385 | c31 -= a3*b1; |
| 1386 | // |
| 1387 | a0 = pD[0+jj*sdd+ps*3]; |
| 1388 | a1 = pD[1+jj*sdd+ps*3]; |
| 1389 | a2 = pD[2+jj*sdd+ps*3]; |
| 1390 | a3 = pD[3+jj*sdd+ps*3]; |
| 1391 | b0 = pW[3+ldw*0]; |
| 1392 | c00 -= a0*b0; |
| 1393 | c10 -= a1*b0; |
| 1394 | c20 -= a2*b0; |
| 1395 | c30 -= a3*b0; |
| 1396 | b1 = pW[3+ldw*1]; |
| 1397 | c01 -= a0*b1; |
| 1398 | c11 -= a1*b1; |
| 1399 | c21 -= a2*b1; |
| 1400 | c31 -= a3*b1; |
| 1401 | // store |
| 1402 | pC[0+jj*sdc+ps*0] = c00; |
| 1403 | pC[1+jj*sdc+ps*0] = c10; |
| 1404 | pC[2+jj*sdc+ps*0] = c20; |
| 1405 | pC[3+jj*sdc+ps*0] = c30; |
| 1406 | pC[0+jj*sdc+ps*1] = c01; |
| 1407 | pC[1+jj*sdc+ps*1] = c11; |
| 1408 | pC[2+jj*sdc+ps*1] = c21; |
| 1409 | pC[3+jj*sdc+ps*1] = c31; |
| 1410 | } |
| 1411 | for(ll=0; ll<m-jj; ll++) |
| 1412 | { |
| 1413 | // load |
| 1414 | c00 = pC[ll+jj*sdc+ps*0]; |
| 1415 | c01 = pC[ll+jj*sdc+ps*1]; |
| 1416 | // |
| 1417 | a0 = pD[ll+jj*sdd+ps*0]; |
| 1418 | b0 = pW[0+ldw*0]; |
| 1419 | c00 -= a0*b0; |
| 1420 | b1 = pW[0+ldw*1]; |
| 1421 | c01 -= a0*b1; |
| 1422 | // |
| 1423 | a0 = pD[ll+jj*sdd+ps*1]; |
| 1424 | b0 = pW[1+ldw*0]; |
| 1425 | c00 -= a0*b0; |
| 1426 | b1 = pW[1+ldw*1]; |
| 1427 | c01 -= a0*b1; |
| 1428 | // |
| 1429 | a0 = pD[ll+jj*sdd+ps*2]; |
| 1430 | b0 = pW[2+ldw*0]; |
| 1431 | c00 -= a0*b0; |
| 1432 | b1 = pW[2+ldw*1]; |
| 1433 | c01 -= a0*b1; |
| 1434 | // |
| 1435 | a0 = pD[ll+jj*sdd+ps*3]; |
| 1436 | b0 = pW[3+ldw*0]; |
| 1437 | c00 -= a0*b0; |
| 1438 | b1 = pW[3+ldw*1]; |
| 1439 | c01 -= a0*b1; |
| 1440 | // store |
| 1441 | pC[ll+jj*sdc+ps*0] = c00; |
| 1442 | pC[ll+jj*sdc+ps*1] = c01; |
| 1443 | } |
| 1444 | } |
| 1445 | for( ; ii<n; ii++) |
| 1446 | { |
| 1447 | pC = pC0+ii*ps; |
| 1448 | // compute W^T = C^T * V |
| 1449 | tmp = pC[0+ps*0]; |
| 1450 | pW[0+ldw*0] = tmp; |
| 1451 | if(m>1) |
| 1452 | { |
| 1453 | d0 = pVt[0+ps*1]; |
| 1454 | tmp = pC[1+ps*0]; |
| 1455 | pW[0+ldw*0] += d0 * tmp; |
| 1456 | pW[1+ldw*0] = tmp; |
| 1457 | if(m>2) |
| 1458 | { |
| 1459 | d0 = pVt[0+ps*2]; |
| 1460 | d1 = pVt[1+ps*2]; |
| 1461 | tmp = pC[2+ps*0]; |
| 1462 | pW[0+ldw*0] += d0 * tmp; |
| 1463 | pW[1+ldw*0] += d1 * tmp; |
| 1464 | pW[2+ldw*0] = tmp; |
| 1465 | if(m>3) |
| 1466 | { |
| 1467 | d0 = pVt[0+ps*3]; |
| 1468 | d1 = pVt[1+ps*3]; |
| 1469 | d2 = pVt[2+ps*3]; |
| 1470 | tmp = pC[3+ps*0]; |
| 1471 | pW[0+ldw*0] += d0 * tmp; |
| 1472 | pW[1+ldw*0] += d1 * tmp; |
| 1473 | pW[2+ldw*0] += d2 * tmp; |
| 1474 | pW[3+ldw*0] = tmp; |
| 1475 | } |
| 1476 | } |
| 1477 | } |
| 1478 | for(jj=4; jj<m-3; jj+=4) |
| 1479 | { |
| 1480 | // |
| 1481 | d0 = pVt[0+ps*(0+jj)]; |
| 1482 | d1 = pVt[1+ps*(0+jj)]; |
| 1483 | d2 = pVt[2+ps*(0+jj)]; |
| 1484 | d3 = pVt[3+ps*(0+jj)]; |
| 1485 | tmp = pC[0+jj*sdc+ps*0]; |
| 1486 | pW[0+ldw*0] += d0 * tmp; |
| 1487 | pW[1+ldw*0] += d1 * tmp; |
| 1488 | pW[2+ldw*0] += d2 * tmp; |
| 1489 | pW[3+ldw*0] += d3 * tmp; |
| 1490 | // |
| 1491 | d0 = pVt[0+ps*(1+jj)]; |
| 1492 | d1 = pVt[1+ps*(1+jj)]; |
| 1493 | d2 = pVt[2+ps*(1+jj)]; |
| 1494 | d3 = pVt[3+ps*(1+jj)]; |
| 1495 | tmp = pC[1+jj*sdc+ps*0]; |
| 1496 | pW[0+ldw*0] += d0 * tmp; |
| 1497 | pW[1+ldw*0] += d1 * tmp; |
| 1498 | pW[2+ldw*0] += d2 * tmp; |
| 1499 | pW[3+ldw*0] += d3 * tmp; |
| 1500 | // |
| 1501 | d0 = pVt[0+ps*(2+jj)]; |
| 1502 | d1 = pVt[1+ps*(2+jj)]; |
| 1503 | d2 = pVt[2+ps*(2+jj)]; |
| 1504 | d3 = pVt[3+ps*(2+jj)]; |
| 1505 | tmp = pC[2+jj*sdc+ps*0]; |
| 1506 | pW[0+ldw*0] += d0 * tmp; |
| 1507 | pW[1+ldw*0] += d1 * tmp; |
| 1508 | pW[2+ldw*0] += d2 * tmp; |
| 1509 | pW[3+ldw*0] += d3 * tmp; |
| 1510 | // |
| 1511 | d0 = pVt[0+ps*(3+jj)]; |
| 1512 | d1 = pVt[1+ps*(3+jj)]; |
| 1513 | d2 = pVt[2+ps*(3+jj)]; |
| 1514 | d3 = pVt[3+ps*(3+jj)]; |
| 1515 | tmp = pC[3+jj*sdc+ps*0]; |
| 1516 | pW[0+ldw*0] += d0 * tmp; |
| 1517 | pW[1+ldw*0] += d1 * tmp; |
| 1518 | pW[2+ldw*0] += d2 * tmp; |
| 1519 | pW[3+ldw*0] += d3 * tmp; |
| 1520 | } |
| 1521 | for(ll=0; ll<m-jj; ll++) |
| 1522 | { |
| 1523 | d0 = pVt[0+ps*(ll+jj)]; |
| 1524 | d1 = pVt[1+ps*(ll+jj)]; |
| 1525 | d2 = pVt[2+ps*(ll+jj)]; |
| 1526 | d3 = pVt[3+ps*(ll+jj)]; |
| 1527 | tmp = pC[ll+jj*sdc+ps*0]; |
| 1528 | pW[0+ldw*0] += d0 * tmp; |
| 1529 | pW[1+ldw*0] += d1 * tmp; |
| 1530 | pW[2+ldw*0] += d2 * tmp; |
| 1531 | pW[3+ldw*0] += d3 * tmp; |
| 1532 | } |
| 1533 | // compute W^T *= T |
| 1534 | pW[3+ldw*0] = pT[3+ldt*0]*pW[0+ldw*0] + pT[3+ldt*1]*pW[1+ldw*0] + pT[3+ldt*2]*pW[2+ldw*0] + pT[3+ldt*3]*pW[3+ldw*0]; |
| 1535 | pW[2+ldw*0] = pT[2+ldt*0]*pW[0+ldw*0] + pT[2+ldt*1]*pW[1+ldw*0] + pT[2+ldt*2]*pW[2+ldw*0]; |
| 1536 | pW[1+ldw*0] = pT[1+ldt*0]*pW[0+ldw*0] + pT[1+ldt*1]*pW[1+ldw*0]; |
| 1537 | pW[0+ldw*0] = pT[0+ldt*0]*pW[0+ldw*0]; |
| 1538 | // compute C -= V * W^T |
| 1539 | jj = 0; |
| 1540 | // load |
| 1541 | c00 = pC[0+jj*sdc+ps*0]; |
| 1542 | c10 = pC[1+jj*sdc+ps*0]; |
| 1543 | c20 = pC[2+jj*sdc+ps*0]; |
| 1544 | c30 = pC[3+jj*sdc+ps*0]; |
| 1545 | // rank1 |
| 1546 | a1 = pD[1+jj*sdd+ps*0]; |
| 1547 | a2 = pD[2+jj*sdd+ps*0]; |
| 1548 | a3 = pD[3+jj*sdd+ps*0]; |
| 1549 | b0 = pW[0+ldw*0]; |
| 1550 | c00 -= b0; |
| 1551 | c10 -= a1*b0; |
| 1552 | c20 -= a2*b0; |
| 1553 | c30 -= a3*b0; |
| 1554 | // rank2 |
| 1555 | a2 = pD[2+jj*sdd+ps*1]; |
| 1556 | a3 = pD[3+jj*sdd+ps*1]; |
| 1557 | b0 = pW[1+ldw*0]; |
| 1558 | c10 -= b0; |
| 1559 | c20 -= a2*b0; |
| 1560 | c30 -= a3*b0; |
| 1561 | // rank3 |
| 1562 | a3 = pD[3+jj*sdd+ps*2]; |
| 1563 | b0 = pW[2+ldw*0]; |
| 1564 | c20 -= b0; |
| 1565 | c30 -= a3*b0; |
| 1566 | // rank4 |
| 1567 | a3 = pD[3+jj*sdd+ps*3]; |
| 1568 | b0 = pW[3+ldw*0]; |
| 1569 | c30 -= b0; |
| 1570 | // store |
| 1571 | pC[0+jj*sdc+ps*0] = c00; |
| 1572 | if(m>1) |
| 1573 | { |
| 1574 | pC[1+jj*sdc+ps*0] = c10; |
| 1575 | if(m>2) |
| 1576 | { |
| 1577 | pC[2+jj*sdc+ps*0] = c20; |
| 1578 | if(m>3) |
| 1579 | { |
| 1580 | pC[3+jj*sdc+ps*0] = c30; |
| 1581 | } |
| 1582 | } |
| 1583 | } |
| 1584 | for(jj=4; jj<m-3; jj+=4) |
| 1585 | { |
| 1586 | // load |
| 1587 | c00 = pC[0+jj*sdc+ps*0]; |
| 1588 | c10 = pC[1+jj*sdc+ps*0]; |
| 1589 | c20 = pC[2+jj*sdc+ps*0]; |
| 1590 | c30 = pC[3+jj*sdc+ps*0]; |
| 1591 | // |
| 1592 | a0 = pD[0+jj*sdd+ps*0]; |
| 1593 | a1 = pD[1+jj*sdd+ps*0]; |
| 1594 | a2 = pD[2+jj*sdd+ps*0]; |
| 1595 | a3 = pD[3+jj*sdd+ps*0]; |
| 1596 | b0 = pW[0+ldw*0]; |
| 1597 | c00 -= a0*b0; |
| 1598 | c10 -= a1*b0; |
| 1599 | c20 -= a2*b0; |
| 1600 | c30 -= a3*b0; |
| 1601 | // |
| 1602 | a0 = pD[0+jj*sdd+ps*1]; |
| 1603 | a1 = pD[1+jj*sdd+ps*1]; |
| 1604 | a2 = pD[2+jj*sdd+ps*1]; |
| 1605 | a3 = pD[3+jj*sdd+ps*1]; |
| 1606 | b0 = pW[1+ldw*0]; |
| 1607 | c00 -= a0*b0; |
| 1608 | c10 -= a1*b0; |
| 1609 | c20 -= a2*b0; |
| 1610 | c30 -= a3*b0; |
| 1611 | // |
| 1612 | a0 = pD[0+jj*sdd+ps*2]; |
| 1613 | a1 = pD[1+jj*sdd+ps*2]; |
| 1614 | a2 = pD[2+jj*sdd+ps*2]; |
| 1615 | a3 = pD[3+jj*sdd+ps*2]; |
| 1616 | b0 = pW[2+ldw*0]; |
| 1617 | c00 -= a0*b0; |
| 1618 | c10 -= a1*b0; |
| 1619 | c20 -= a2*b0; |
| 1620 | c30 -= a3*b0; |
| 1621 | // |
| 1622 | a0 = pD[0+jj*sdd+ps*3]; |
| 1623 | a1 = pD[1+jj*sdd+ps*3]; |
| 1624 | a2 = pD[2+jj*sdd+ps*3]; |
| 1625 | a3 = pD[3+jj*sdd+ps*3]; |
| 1626 | b0 = pW[3+ldw*0]; |
| 1627 | c00 -= a0*b0; |
| 1628 | c10 -= a1*b0; |
| 1629 | c20 -= a2*b0; |
| 1630 | c30 -= a3*b0; |
| 1631 | // store |
| 1632 | pC[0+jj*sdc+ps*0] = c00; |
| 1633 | pC[1+jj*sdc+ps*0] = c10; |
| 1634 | pC[2+jj*sdc+ps*0] = c20; |
| 1635 | pC[3+jj*sdc+ps*0] = c30; |
| 1636 | } |
| 1637 | for(ll=0; ll<m-jj; ll++) |
| 1638 | { |
| 1639 | // load |
| 1640 | c00 = pC[ll+jj*sdc+ps*0]; |
| 1641 | // |
| 1642 | a0 = pD[ll+jj*sdd+ps*0]; |
| 1643 | b0 = pW[0+ldw*0]; |
| 1644 | c00 -= a0*b0; |
| 1645 | // |
| 1646 | a0 = pD[ll+jj*sdd+ps*1]; |
| 1647 | b0 = pW[1+ldw*0]; |
| 1648 | c00 -= a0*b0; |
| 1649 | // |
| 1650 | a0 = pD[ll+jj*sdd+ps*2]; |
| 1651 | b0 = pW[2+ldw*0]; |
| 1652 | c00 -= a0*b0; |
| 1653 | // |
| 1654 | a0 = pD[ll+jj*sdd+ps*3]; |
| 1655 | b0 = pW[3+ldw*0]; |
| 1656 | c00 -= a0*b0; |
| 1657 | // store |
| 1658 | pC[ll+jj*sdc+ps*0] = c00; |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | return; |
| 1663 | } |
| 1664 | |
| 1665 | |
| 1666 | |
| 1667 | // assume n>=4 |
| 1668 | void kernel_dgelqf_4_lib4(int n, double *pD, double *dD) |
| 1669 | { |
| 1670 | int ii, jj, ll; |
| 1671 | double alpha, beta, tmp, w1, w2, w3; |
| 1672 | const int ps = 4; |
| 1673 | // first column |
| 1674 | beta = 0.0; |
| 1675 | for(ii=1; ii<n; ii++) |
| 1676 | { |
| 1677 | tmp = pD[0+ps*ii]; |
| 1678 | beta += tmp*tmp; |
| 1679 | } |
| 1680 | if(beta==0.0) |
| 1681 | { |
| 1682 | // tau |
| 1683 | dD[0] = 0.0; |
| 1684 | } |
| 1685 | else |
| 1686 | { |
| 1687 | alpha = pD[0+ps*0]; |
| 1688 | beta += alpha*alpha; |
| 1689 | beta = sqrt(beta); |
| 1690 | if(alpha>0) |
| 1691 | beta = -beta; |
| 1692 | // tau0 |
| 1693 | dD[0] = (beta-alpha) / beta; |
| 1694 | tmp = 1.0 / (alpha-beta); |
| 1695 | // compute v0 |
| 1696 | pD[0+ps*0] = beta; |
| 1697 | for(ii=1; ii<n; ii++) |
| 1698 | { |
| 1699 | pD[0+ps*ii] *= tmp; |
| 1700 | } |
| 1701 | } |
| 1702 | // gemv_t & ger |
| 1703 | w1 = pD[1+ps*0]; |
| 1704 | w2 = pD[2+ps*0]; |
| 1705 | w3 = pD[3+ps*0]; |
| 1706 | w1 += pD[1+ps*1] * pD[0+ps*1]; |
| 1707 | w2 += pD[2+ps*1] * pD[0+ps*1]; |
| 1708 | w3 += pD[3+ps*1] * pD[0+ps*1]; |
| 1709 | w1 += pD[1+ps*2] * pD[0+ps*2]; |
| 1710 | w2 += pD[2+ps*2] * pD[0+ps*2]; |
| 1711 | w3 += pD[3+ps*2] * pD[0+ps*2]; |
| 1712 | w1 += pD[1+ps*3] * pD[0+ps*3]; |
| 1713 | w2 += pD[2+ps*3] * pD[0+ps*3]; |
| 1714 | w3 += pD[3+ps*3] * pD[0+ps*3]; |
| 1715 | for(ii=4; ii<n; ii++) |
| 1716 | { |
| 1717 | w1 += pD[1+ps*ii] * pD[0+ps*ii]; |
| 1718 | w2 += pD[2+ps*ii] * pD[0+ps*ii]; |
| 1719 | w3 += pD[3+ps*ii] * pD[0+ps*ii]; |
| 1720 | } |
| 1721 | w1 = - dD[0] * w1; |
| 1722 | w2 = - dD[0] * w2; |
| 1723 | w3 = - dD[0] * w3; |
| 1724 | pD[1+ps*0] += w1; |
| 1725 | pD[2+ps*0] += w2; |
| 1726 | pD[3+ps*0] += w3; |
| 1727 | pD[1+ps*1] += w1 * pD[0+ps*1]; |
| 1728 | pD[2+ps*1] += w2 * pD[0+ps*1]; |
| 1729 | pD[3+ps*1] += w3 * pD[0+ps*1]; |
| 1730 | pD[1+ps*2] += w1 * pD[0+ps*2]; |
| 1731 | pD[2+ps*2] += w2 * pD[0+ps*2]; |
| 1732 | pD[3+ps*2] += w3 * pD[0+ps*2]; |
| 1733 | pD[1+ps*3] += w1 * pD[0+ps*3]; |
| 1734 | pD[2+ps*3] += w2 * pD[0+ps*3]; |
| 1735 | pD[3+ps*3] += w3 * pD[0+ps*3]; |
| 1736 | for(ii=4; ii<n; ii++) |
| 1737 | { |
| 1738 | pD[1+ps*ii] += w1 * pD[0+ps*ii]; |
| 1739 | pD[2+ps*ii] += w2 * pD[0+ps*ii]; |
| 1740 | pD[3+ps*ii] += w3 * pD[0+ps*ii]; |
| 1741 | } |
| 1742 | // second column |
| 1743 | beta = 0.0; |
| 1744 | for(ii=2; ii<n; ii++) |
| 1745 | { |
| 1746 | tmp = pD[1+ps*ii]; |
| 1747 | beta += tmp*tmp; |
| 1748 | } |
| 1749 | if(beta==0.0) |
| 1750 | { |
| 1751 | // tau |
| 1752 | dD[1] = 0.0; |
| 1753 | } |
| 1754 | else |
| 1755 | { |
| 1756 | alpha = pD[1+ps*1]; |
| 1757 | beta += alpha*alpha; |
| 1758 | beta = sqrt(beta); |
| 1759 | if(alpha>0) |
| 1760 | beta = -beta; |
| 1761 | // tau0 |
| 1762 | dD[1] = (beta-alpha) / beta; |
| 1763 | tmp = 1.0 / (alpha-beta); |
| 1764 | // compute v0 |
| 1765 | pD[1+ps*1] = beta; |
| 1766 | for(ii=2; ii<n; ii++) |
| 1767 | { |
| 1768 | pD[1+ps*ii] *= tmp; |
| 1769 | } |
| 1770 | } |
| 1771 | // gemv_t & ger |
| 1772 | w2 = pD[2+ps*1]; |
| 1773 | w3 = pD[3+ps*1]; |
| 1774 | w2 += pD[2+ps*2] * pD[1+ps*2]; |
| 1775 | w3 += pD[3+ps*2] * pD[1+ps*2]; |
| 1776 | w2 += pD[2+ps*3] * pD[1+ps*3]; |
| 1777 | w3 += pD[3+ps*3] * pD[1+ps*3]; |
| 1778 | for(ii=4; ii<n; ii++) |
| 1779 | { |
| 1780 | w2 += pD[2+ps*ii] * pD[1+ps*ii]; |
| 1781 | w3 += pD[3+ps*ii] * pD[1+ps*ii]; |
| 1782 | } |
| 1783 | w2 = - dD[1] * w2; |
| 1784 | w3 = - dD[1] * w3; |
| 1785 | pD[2+ps*1] += w2; |
| 1786 | pD[3+ps*1] += w3; |
| 1787 | pD[2+ps*2] += w2 * pD[1+ps*2]; |
| 1788 | pD[3+ps*2] += w3 * pD[1+ps*2]; |
| 1789 | pD[2+ps*3] += w2 * pD[1+ps*3]; |
| 1790 | pD[3+ps*3] += w3 * pD[1+ps*3]; |
| 1791 | for(ii=4; ii<n; ii++) |
| 1792 | { |
| 1793 | pD[2+ps*ii] += w2 * pD[1+ps*ii]; |
| 1794 | pD[3+ps*ii] += w3 * pD[1+ps*ii]; |
| 1795 | } |
| 1796 | // third column |
| 1797 | beta = 0.0; |
| 1798 | for(ii=3; ii<n; ii++) |
| 1799 | { |
| 1800 | tmp = pD[2+ps*ii]; |
| 1801 | beta += tmp*tmp; |
| 1802 | } |
| 1803 | if(beta==0.0) |
| 1804 | { |
| 1805 | // tau |
| 1806 | dD[2] = 0.0; |
| 1807 | } |
| 1808 | else |
| 1809 | { |
| 1810 | alpha = pD[2+ps*2]; |
| 1811 | beta += alpha*alpha; |
| 1812 | beta = sqrt(beta); |
| 1813 | if(alpha>0) |
| 1814 | beta = -beta; |
| 1815 | // tau0 |
| 1816 | dD[2] = (beta-alpha) / beta; |
| 1817 | tmp = 1.0 / (alpha-beta); |
| 1818 | // compute v0 |
| 1819 | pD[2+ps*2] = beta; |
| 1820 | for(ii=3; ii<n; ii++) |
| 1821 | { |
| 1822 | pD[2+ps*ii] *= tmp; |
| 1823 | } |
| 1824 | } |
| 1825 | // gemv_t & ger |
| 1826 | w3 = pD[3+ps*2]; |
| 1827 | w3 += pD[3+ps*3] * pD[2+ps*3]; |
| 1828 | for(ii=4; ii<n; ii++) |
| 1829 | { |
| 1830 | w3 += pD[3+ps*ii] * pD[2+ps*ii]; |
| 1831 | } |
| 1832 | w3 = - dD[2] * w3; |
| 1833 | pD[3+ps*2] += w3; |
| 1834 | pD[3+ps*3] += w3 * pD[2+ps*3]; |
| 1835 | for(ii=4; ii<n; ii++) |
| 1836 | { |
| 1837 | pD[3+ps*ii] += w3 * pD[2+ps*ii]; |
| 1838 | } |
| 1839 | // fourth column |
| 1840 | beta = 0.0; |
| 1841 | for(ii=4; ii<n; ii++) |
| 1842 | { |
| 1843 | tmp = pD[3+ps*ii]; |
| 1844 | beta += tmp*tmp; |
| 1845 | } |
| 1846 | if(beta==0.0) |
| 1847 | { |
| 1848 | // tau |
| 1849 | dD[3] = 0.0; |
| 1850 | } |
| 1851 | else |
| 1852 | { |
| 1853 | alpha = pD[3+ps*3]; |
| 1854 | beta += alpha*alpha; |
| 1855 | beta = sqrt(beta); |
| 1856 | if(alpha>0) |
| 1857 | beta = -beta; |
| 1858 | // tau0 |
| 1859 | dD[3] = (beta-alpha) / beta; |
| 1860 | tmp = 1.0 / (alpha-beta); |
| 1861 | // compute v0 |
| 1862 | pD[3+ps*3] = beta; |
| 1863 | for(ii=4; ii<n; ii++) |
| 1864 | { |
| 1865 | pD[3+ps*ii] *= tmp; |
| 1866 | } |
| 1867 | } |
| 1868 | return; |
| 1869 | } |
| 1870 | |
| 1871 | |
| 1872 | |
| 1873 | // unblocked algorithm |
| 1874 | void kernel_dgelqf_vs_lib4(int m, int n, int k, int offD, double *pD, int sdd, double *dD) |
| 1875 | { |
| 1876 | if(m<=0 | n<=0) |
| 1877 | return; |
| 1878 | int ii, jj, kk, ll, imax, jmax, jmax0, kmax, kmax0; |
| 1879 | const int ps = 4; |
| 1880 | imax = k;//m<n ? m : n; |
| 1881 | double alpha, beta, tmp; |
| 1882 | double w00, w01, |
| 1883 | w10, w11, |
| 1884 | w20, w21, |
| 1885 | w30, w31; |
| 1886 | double *pC00, *pC10, *pC10a, *pC20, *pC20a, *pC01, *pC11; |
| 1887 | double pT[4]; |
| 1888 | int ldt = 2; |
| 1889 | double *pD0 = pD-offD; |
| 1890 | ii = 0; |
| 1891 | #if 1 |
| 1892 | for(; ii<imax-1; ii+=2) |
| 1893 | { |
| 1894 | // first row |
| 1895 | pC00 = &pD0[((offD+ii)&(ps-1))+((offD+ii)-((offD+ii)&(ps-1)))*sdd+ii*ps]; |
| 1896 | beta = 0.0; |
| 1897 | for(jj=1; jj<n-ii; jj++) |
| 1898 | { |
| 1899 | tmp = pC00[0+ps*jj]; |
| 1900 | beta += tmp*tmp; |
| 1901 | } |
| 1902 | if(beta==0.0) |
| 1903 | { |
| 1904 | dD[ii] = 0.0; |
| 1905 | } |
| 1906 | else |
| 1907 | { |
| 1908 | alpha = pC00[0]; |
| 1909 | beta += alpha*alpha; |
| 1910 | beta = sqrt(beta); |
| 1911 | if(alpha>0) |
| 1912 | beta = -beta; |
| 1913 | dD[ii] = (beta-alpha) / beta; |
| 1914 | tmp = 1.0 / (alpha-beta); |
| 1915 | pC00[0] = beta; |
| 1916 | for(jj=1; jj<n-ii; jj++) |
| 1917 | pC00[0+ps*jj] *= tmp; |
| 1918 | } |
| 1919 | pC10 = &pD0[((offD+ii+1)&(ps-1))+((offD+ii+1)-((offD+ii+1)&(ps-1)))*sdd+ii*ps]; |
| 1920 | kmax = n-ii; |
| 1921 | w00 = pC10[0+ps*0]; // pC00[0+ps*0] = 1.0 |
| 1922 | for(kk=1; kk<kmax; kk++) |
| 1923 | { |
| 1924 | w00 += pC10[0+ps*kk] * pC00[0+ps*kk]; |
| 1925 | } |
| 1926 | w00 = - w00*dD[ii]; |
| 1927 | pC10[0+ps*0] += w00; // pC00[0+ps*0] = 1.0 |
| 1928 | for(kk=1; kk<kmax; kk++) |
| 1929 | { |
| 1930 | pC10[0+ps*kk] += w00 * pC00[0+ps*kk]; |
| 1931 | } |
| 1932 | // second row |
| 1933 | pC11 = pC10+ps*1; |
| 1934 | beta = 0.0; |
| 1935 | for(jj=1; jj<n-(ii+1); jj++) |
| 1936 | { |
| 1937 | tmp = pC11[0+ps*jj]; |
| 1938 | beta += tmp*tmp; |
| 1939 | } |
| 1940 | if(beta==0.0) |
| 1941 | { |
| 1942 | dD[(ii+1)] = 0.0; |
| 1943 | } |
| 1944 | else |
| 1945 | { |
| 1946 | alpha = pC11[0+ps*0]; |
| 1947 | beta += alpha*alpha; |
| 1948 | beta = sqrt(beta); |
| 1949 | if(alpha>0) |
| 1950 | beta = -beta; |
| 1951 | dD[(ii+1)] = (beta-alpha) / beta; |
| 1952 | tmp = 1.0 / (alpha-beta); |
| 1953 | pC11[0+ps*0] = beta; |
| 1954 | for(jj=1; jj<n-(ii+1); jj++) |
| 1955 | pC11[0+ps*jj] *= tmp; |
| 1956 | } |
| 1957 | // compute T |
| 1958 | kmax = n-ii; |
| 1959 | tmp = 1.0*0.0 + pC00[0+ps*1]*1.0; |
| 1960 | for(kk=2; kk<kmax; kk++) |
| 1961 | tmp += pC00[0+ps*kk]*pC10[0+ps*kk]; |
| 1962 | pT[0+ldt*0] = dD[ii+0]; |
| 1963 | pT[0+ldt*1] = - dD[ii+1] * tmp * dD[ii+0]; |
| 1964 | pT[1+ldt*1] = dD[ii+1]; |
| 1965 | // downgrade |
| 1966 | kmax = n-ii; |
| 1967 | jmax = m-ii-2; |
| 1968 | jmax0 = (ps-((ii+2+offD)&(ps-1)))&(ps-1); |
| 1969 | jmax0 = jmax<jmax0 ? jmax : jmax0; |
| 1970 | jj = 0; |
| 1971 | pC20a = &pD0[((offD+ii+2)&(ps-1))+((offD+ii+2)-((offD+ii+2)&(ps-1)))*sdd+ii*ps]; |
| 1972 | pC20 = pC20a; |
| 1973 | if(jmax0>0) |
| 1974 | { |
| 1975 | for( ; jj<jmax0; jj++) |
| 1976 | { |
| 1977 | w00 = pC20[0+ps*0]*1.0 + pC20[0+ps*1]*pC00[0+ps*1]; |
| 1978 | w01 = pC20[0+ps*0]*0.0 + pC20[0+ps*1]*1.0; |
| 1979 | for(kk=2; kk<kmax; kk++) |
| 1980 | { |
| 1981 | w00 += pC20[0+ps*kk]*pC00[0+ps*kk]; |
| 1982 | w01 += pC20[0+ps*kk]*pC10[0+ps*kk]; |
| 1983 | } |
| 1984 | w01 = - w00*pT[0+ldt*1] - w01*pT[1+ldt*1]; |
| 1985 | w00 = - w00*pT[0+ldt*0]; |
| 1986 | pC20[0+ps*0] += w00*1.0 + w01*0.0; |
| 1987 | pC20[0+ps*1] += w00*pC00[0+ps*1] + w01*1.0; |
| 1988 | for(kk=2; kk<kmax; kk++) |
| 1989 | { |
| 1990 | pC20[0+ps*kk] += w00*pC00[0+ps*kk] + w01*pC10[0+ps*kk]; |
| 1991 | } |
| 1992 | pC20 += 1; |
| 1993 | } |
| 1994 | pC20 += -ps+ps*sdd; |
| 1995 | } |
| 1996 | for( ; jj<jmax-3; jj+=4) |
| 1997 | { |
| 1998 | w00 = pC20[0+ps*0]*1.0 + pC20[0+ps*1]*pC00[0+ps*1]; |
| 1999 | w10 = pC20[1+ps*0]*1.0 + pC20[1+ps*1]*pC00[0+ps*1]; |
| 2000 | w20 = pC20[2+ps*0]*1.0 + pC20[2+ps*1]*pC00[0+ps*1]; |
| 2001 | w30 = pC20[3+ps*0]*1.0 + pC20[3+ps*1]*pC00[0+ps*1]; |
| 2002 | w01 = pC20[0+ps*0]*0.0 + pC20[0+ps*1]*1.0; |
| 2003 | w11 = pC20[1+ps*0]*0.0 + pC20[1+ps*1]*1.0; |
| 2004 | w21 = pC20[2+ps*0]*0.0 + pC20[2+ps*1]*1.0; |
| 2005 | w31 = pC20[3+ps*0]*0.0 + pC20[3+ps*1]*1.0; |
| 2006 | for(kk=2; kk<kmax; kk++) |
| 2007 | { |
| 2008 | w00 += pC20[0+ps*kk]*pC00[0+ps*kk]; |
| 2009 | w10 += pC20[1+ps*kk]*pC00[0+ps*kk]; |
| 2010 | w20 += pC20[2+ps*kk]*pC00[0+ps*kk]; |
| 2011 | w30 += pC20[3+ps*kk]*pC00[0+ps*kk]; |
| 2012 | w01 += pC20[0+ps*kk]*pC10[0+ps*kk]; |
| 2013 | w11 += pC20[1+ps*kk]*pC10[0+ps*kk]; |
| 2014 | w21 += pC20[2+ps*kk]*pC10[0+ps*kk]; |
| 2015 | w31 += pC20[3+ps*kk]*pC10[0+ps*kk]; |
| 2016 | } |
| 2017 | w01 = - w00*pT[0+ldt*1] - w01*pT[1+ldt*1]; |
| 2018 | w11 = - w10*pT[0+ldt*1] - w11*pT[1+ldt*1]; |
| 2019 | w21 = - w20*pT[0+ldt*1] - w21*pT[1+ldt*1]; |
| 2020 | w31 = - w30*pT[0+ldt*1] - w31*pT[1+ldt*1]; |
| 2021 | w00 = - w00*pT[0+ldt*0]; |
| 2022 | w10 = - w10*pT[0+ldt*0]; |
| 2023 | w20 = - w20*pT[0+ldt*0]; |
| 2024 | w30 = - w30*pT[0+ldt*0]; |
| 2025 | pC20[0+ps*0] += w00*1.0 + w01*0.0; |
| 2026 | pC20[1+ps*0] += w10*1.0 + w11*0.0; |
| 2027 | pC20[2+ps*0] += w20*1.0 + w21*0.0; |
| 2028 | pC20[3+ps*0] += w30*1.0 + w31*0.0; |
| 2029 | pC20[0+ps*1] += w00*pC00[0+ps*1] + w01*1.0; |
| 2030 | pC20[1+ps*1] += w10*pC00[0+ps*1] + w11*1.0; |
| 2031 | pC20[2+ps*1] += w20*pC00[0+ps*1] + w21*1.0; |
| 2032 | pC20[3+ps*1] += w30*pC00[0+ps*1] + w31*1.0; |
| 2033 | for(kk=2; kk<kmax; kk++) |
| 2034 | { |
| 2035 | pC20[0+ps*kk] += w00*pC00[0+ps*kk] + w01*pC10[0+ps*kk]; |
| 2036 | pC20[1+ps*kk] += w10*pC00[0+ps*kk] + w11*pC10[0+ps*kk]; |
| 2037 | pC20[2+ps*kk] += w20*pC00[0+ps*kk] + w21*pC10[0+ps*kk]; |
| 2038 | pC20[3+ps*kk] += w30*pC00[0+ps*kk] + w31*pC10[0+ps*kk]; |
| 2039 | } |
| 2040 | pC20 += ps*sdd; |
| 2041 | } |
| 2042 | for(ll=0; ll<jmax-jj; ll++) |
| 2043 | { |
| 2044 | w00 = pC20[0+ps*0]*1.0 + pC20[0+ps*1]*pC00[0+ps*1]; |
| 2045 | w01 = pC20[0+ps*0]*0.0 + pC20[0+ps*1]*1.0; |
| 2046 | for(kk=2; kk<kmax; kk++) |
| 2047 | { |
| 2048 | w00 += pC20[0+ps*kk]*pC00[0+ps*kk]; |
| 2049 | w01 += pC20[0+ps*kk]*pC10[0+ps*kk]; |
| 2050 | } |
| 2051 | w01 = - w00*pT[0+ldt*1] - w01*pT[1+ldt*1]; |
| 2052 | w00 = - w00*pT[0+ldt*0]; |
| 2053 | pC20[0+ps*0] += w00*1.0 + w01*0.0; |
| 2054 | pC20[0+ps*1] += w00*pC00[0+ps*1] + w01*1.0; |
| 2055 | for(kk=2; kk<kmax; kk++) |
| 2056 | { |
| 2057 | pC20[0+ps*kk] += w00*pC00[0+ps*kk] + w01*pC10[0+ps*kk]; |
| 2058 | } |
| 2059 | pC20 += 1; |
| 2060 | } |
| 2061 | } |
| 2062 | #endif |
| 2063 | for(; ii<imax; ii++) |
| 2064 | { |
| 2065 | pC00 = &pD0[((offD+ii)&(ps-1))+((offD+ii)-((offD+ii)&(ps-1)))*sdd+ii*ps]; |
| 2066 | beta = 0.0; |
| 2067 | for(jj=1; jj<n-ii; jj++) |
| 2068 | { |
| 2069 | tmp = pC00[0+ps*jj]; |
| 2070 | beta += tmp*tmp; |
| 2071 | } |
| 2072 | if(beta==0.0) |
| 2073 | { |
| 2074 | dD[ii] = 0.0; |
| 2075 | } |
| 2076 | else |
| 2077 | { |
| 2078 | alpha = pC00[0]; |
| 2079 | beta += alpha*alpha; |
| 2080 | beta = sqrt(beta); |
| 2081 | if(alpha>0) |
| 2082 | beta = -beta; |
| 2083 | dD[ii] = (beta-alpha) / beta; |
| 2084 | tmp = 1.0 / (alpha-beta); |
| 2085 | pC00[0] = beta; |
| 2086 | for(jj=1; jj<n-ii; jj++) |
| 2087 | pC00[0+ps*jj] *= tmp; |
| 2088 | } |
| 2089 | if(ii<n) |
| 2090 | { |
| 2091 | kmax = n-ii; |
| 2092 | jmax = m-ii-1; |
| 2093 | jmax0 = (ps-((ii+1+offD)&(ps-1)))&(ps-1); |
| 2094 | jmax0 = jmax<jmax0 ? jmax : jmax0; |
| 2095 | jj = 0; |
| 2096 | pC10a = &pD0[((offD+ii+1)&(ps-1))+((offD+ii+1)-((offD+ii+1)&(ps-1)))*sdd+ii*ps]; |
| 2097 | pC10 = pC10a; |
| 2098 | if(jmax0>0) |
| 2099 | { |
| 2100 | for( ; jj<jmax0; jj++) |
| 2101 | { |
| 2102 | w00 = pC10[0+ps*0]; |
| 2103 | for(kk=1; kk<kmax; kk++) |
| 2104 | { |
| 2105 | w00 += pC10[0+ps*kk] * pC00[0+ps*kk]; |
| 2106 | } |
| 2107 | w00 = - w00*dD[ii]; |
| 2108 | pC10[0+ps*0] += w00; |
| 2109 | for(kk=1; kk<kmax; kk++) |
| 2110 | { |
| 2111 | pC10[0+ps*kk] += w00 * pC00[0+ps*kk]; |
| 2112 | } |
| 2113 | pC10 += 1; |
| 2114 | } |
| 2115 | pC10 += -ps+ps*sdd; |
| 2116 | } |
| 2117 | for( ; jj<jmax-3; jj+=4) |
| 2118 | { |
| 2119 | w00 = pC10[0+ps*0]; |
| 2120 | w10 = pC10[1+ps*0]; |
| 2121 | w20 = pC10[2+ps*0]; |
| 2122 | w30 = pC10[3+ps*0]; |
| 2123 | for(kk=1; kk<kmax; kk++) |
| 2124 | { |
| 2125 | w00 += pC10[0+ps*kk]*pC00[0+ps*kk]; |
| 2126 | w10 += pC10[1+ps*kk]*pC00[0+ps*kk]; |
| 2127 | w20 += pC10[2+ps*kk]*pC00[0+ps*kk]; |
| 2128 | w30 += pC10[3+ps*kk]*pC00[0+ps*kk]; |
| 2129 | } |
| 2130 | w00 = - w00*dD[ii]; |
| 2131 | w10 = - w10*dD[ii]; |
| 2132 | w20 = - w20*dD[ii]; |
| 2133 | w30 = - w30*dD[ii]; |
| 2134 | pC10[0+ps*0] += w00; |
| 2135 | pC10[1+ps*0] += w10; |
| 2136 | pC10[2+ps*0] += w20; |
| 2137 | pC10[3+ps*0] += w30; |
| 2138 | for(kk=1; kk<kmax; kk++) |
| 2139 | { |
| 2140 | pC10[0+ps*kk] += w00*pC00[0+ps*kk]; |
| 2141 | pC10[1+ps*kk] += w10*pC00[0+ps*kk]; |
| 2142 | pC10[2+ps*kk] += w20*pC00[0+ps*kk]; |
| 2143 | pC10[3+ps*kk] += w30*pC00[0+ps*kk]; |
| 2144 | } |
| 2145 | pC10 += ps*sdd; |
| 2146 | } |
| 2147 | for(ll=0; ll<jmax-jj; ll++) |
| 2148 | { |
| 2149 | w00 = pC10[0+ps*0]; |
| 2150 | for(kk=1; kk<kmax; kk++) |
| 2151 | { |
| 2152 | w00 += pC10[0+ps*kk] * pC00[0+ps*kk]; |
| 2153 | } |
| 2154 | w00 = - w00*dD[ii]; |
| 2155 | pC10[0+ps*0] += w00; |
| 2156 | for(kk=1; kk<kmax; kk++) |
| 2157 | { |
| 2158 | pC10[0+ps*kk] += w00 * pC00[0+ps*kk]; |
| 2159 | } |
| 2160 | pC10 += 1; |
| 2161 | } |
| 2162 | } |
| 2163 | } |
| 2164 | return; |
| 2165 | } |
| 2166 | |
| 2167 | |
| 2168 | |
| 2169 | // assume kmax>=4 |
| 2170 | void kernel_dlarft_4_lib4(int kmax, double *pD, double *dD, double *pT) |
| 2171 | { |
| 2172 | const int ps = 4; |
| 2173 | int kk; |
| 2174 | double v10, |
| 2175 | v20, v21, |
| 2176 | v30, v31, v32; |
| 2177 | // 0 |
| 2178 | // 1 |
| 2179 | v10 = pD[0+ps*1]; |
| 2180 | // 2 |
| 2181 | v10 += pD[1+ps*2]*pD[0+ps*2]; |
| 2182 | v20 = pD[0+ps*2]; |
| 2183 | v21 = pD[1+ps*2]; |
| 2184 | // 3 |
| 2185 | v10 += pD[1+ps*3]*pD[0+ps*3]; |
| 2186 | v20 += pD[2+ps*3]*pD[0+ps*3]; |
| 2187 | v21 += pD[2+ps*3]*pD[1+ps*3]; |
| 2188 | v30 = pD[0+ps*3]; |
| 2189 | v31 = pD[1+ps*3]; |
| 2190 | v32 = pD[2+ps*3]; |
| 2191 | // |
| 2192 | for(kk=4; kk<kmax; kk++) |
| 2193 | { |
| 2194 | v10 += pD[1+ps*kk]*pD[0+ps*kk]; |
| 2195 | v20 += pD[2+ps*kk]*pD[0+ps*kk]; |
| 2196 | v30 += pD[3+ps*kk]*pD[0+ps*kk]; |
| 2197 | v21 += pD[2+ps*kk]*pD[1+ps*kk]; |
| 2198 | v31 += pD[3+ps*kk]*pD[1+ps*kk]; |
| 2199 | v32 += pD[3+ps*kk]*pD[2+ps*kk]; |
| 2200 | } |
| 2201 | pT[0+ps*0] = - dD[0]; |
| 2202 | pT[1+ps*1] = - dD[1]; |
| 2203 | pT[2+ps*2] = - dD[2]; |
| 2204 | pT[3+ps*3] = - dD[3]; |
| 2205 | pT[0+ps*1] = - dD[1] * (v10*pT[0+ps*0]); |
| 2206 | pT[1+ps*2] = - dD[2] * (v21*pT[1+ps*1]); |
| 2207 | pT[2+ps*3] = - dD[3] * (v32*pT[2+ps*2]); |
| 2208 | pT[0+ps*2] = - dD[2] * (v20*pT[0+ps*0] + v21*pT[0+ps*1]); |
| 2209 | pT[1+ps*3] = - dD[3] * (v31*pT[1+ps*1] + v32*pT[1+ps*2]); |
| 2210 | pT[0+ps*3] = - dD[3] * (v30*pT[0+ps*0] + v31*pT[0+ps*1] + v32*pT[0+ps*2]); |
| 2211 | return; |
| 2212 | } |
| 2213 | |
| 2214 | |
| 2215 | |
| 2216 | // assume n>=4 |
| 2217 | void kernel_dgelqf_dlarft4_4_lib4(int n, double *pD, double *dD, double *pT) |
| 2218 | { |
| 2219 | int ii, jj, ll; |
| 2220 | double alpha, beta, tmp, w0, w1, w2, w3; |
| 2221 | const int ps = 4; |
| 2222 | // zero tau matrix |
| 2223 | for(ii=0; ii<16; ii++) |
| 2224 | pT[ii] = 0.0; |
| 2225 | // first column |
| 2226 | beta = 0.0; |
| 2227 | for(ii=1; ii<n; ii++) |
| 2228 | { |
| 2229 | tmp = pD[0+ps*ii]; |
| 2230 | beta += tmp*tmp; |
| 2231 | } |
| 2232 | if(beta==0.0) |
| 2233 | { |
| 2234 | dD[0] = 0.0; |
| 2235 | tmp = 0.0; |
| 2236 | goto col2; |
| 2237 | } |
| 2238 | alpha = pD[0+ps*0]; |
| 2239 | beta += alpha*alpha; |
| 2240 | beta = sqrt(beta); |
| 2241 | if(alpha>0) |
| 2242 | beta = -beta; |
| 2243 | dD[0] = (beta-alpha) / beta; |
| 2244 | pT[0+ps*0] = - dD[0]; |
| 2245 | tmp = 1.0 / (alpha-beta); |
| 2246 | // |
| 2247 | pD[0+ps*0] = beta; |
| 2248 | w1 = pD[1+ps*0]; |
| 2249 | w2 = pD[2+ps*0]; |
| 2250 | w3 = pD[3+ps*0]; |
| 2251 | // |
| 2252 | pD[0+ps*1] *= tmp; |
| 2253 | w1 += pD[1+ps*1] * pD[0+ps*1]; |
| 2254 | w2 += pD[2+ps*1] * pD[0+ps*1]; |
| 2255 | w3 += pD[3+ps*1] * pD[0+ps*1]; |
| 2256 | // |
| 2257 | pD[0+ps*2] *= tmp; |
| 2258 | w1 += pD[1+ps*2] * pD[0+ps*2]; |
| 2259 | w2 += pD[2+ps*2] * pD[0+ps*2]; |
| 2260 | w3 += pD[3+ps*2] * pD[0+ps*2]; |
| 2261 | // |
| 2262 | pD[0+ps*3] *= tmp; |
| 2263 | w1 += pD[1+ps*3] * pD[0+ps*3]; |
| 2264 | w2 += pD[2+ps*3] * pD[0+ps*3]; |
| 2265 | w3 += pD[3+ps*3] * pD[0+ps*3]; |
| 2266 | // |
| 2267 | for(ii=4; ii<n; ii++) |
| 2268 | { |
| 2269 | pD[0+ps*ii] *= tmp; |
| 2270 | w1 += pD[1+ps*ii] * pD[0+ps*ii]; |
| 2271 | w2 += pD[2+ps*ii] * pD[0+ps*ii]; |
| 2272 | w3 += pD[3+ps*ii] * pD[0+ps*ii]; |
| 2273 | } |
| 2274 | // |
| 2275 | w1 = - dD[0] * w1; |
| 2276 | w2 = - dD[0] * w2; |
| 2277 | w3 = - dD[0] * w3; |
| 2278 | // |
| 2279 | pD[1+ps*0] += w1; |
| 2280 | pD[2+ps*0] += w2; |
| 2281 | pD[3+ps*0] += w3; |
| 2282 | // |
| 2283 | pD[1+ps*1] += w1 * pD[0+ps*1]; |
| 2284 | pD[2+ps*1] += w2 * pD[0+ps*1]; |
| 2285 | pD[3+ps*1] += w3 * pD[0+ps*1]; |
| 2286 | // |
| 2287 | pD[1+ps*2] += w1 * pD[0+ps*2]; |
| 2288 | pD[2+ps*2] += w2 * pD[0+ps*2]; |
| 2289 | pD[3+ps*2] += w3 * pD[0+ps*2]; |
| 2290 | beta = pD[1+ps*2] * pD[1+ps*2]; |
| 2291 | // |
| 2292 | pD[1+ps*3] += w1 * pD[0+ps*3]; |
| 2293 | pD[2+ps*3] += w2 * pD[0+ps*3]; |
| 2294 | pD[3+ps*3] += w3 * pD[0+ps*3]; |
| 2295 | beta += pD[1+ps*3] * pD[1+ps*3]; |
| 2296 | // |
| 2297 | for(ii=4; ii<n; ii++) |
| 2298 | { |
| 2299 | pD[1+ps*ii] += w1 * pD[0+ps*ii]; |
| 2300 | pD[2+ps*ii] += w2 * pD[0+ps*ii]; |
| 2301 | pD[3+ps*ii] += w3 * pD[0+ps*ii]; |
| 2302 | beta += pD[1+ps*ii] * pD[1+ps*ii]; |
| 2303 | } |
| 2304 | // second column |
| 2305 | col2: |
| 2306 | if(beta==0.0) |
| 2307 | { |
| 2308 | dD[1] = 0.0; |
| 2309 | tmp = 0.0; |
| 2310 | goto col3; |
| 2311 | } |
| 2312 | alpha = pD[1+ps*1]; |
| 2313 | beta += alpha*alpha; |
| 2314 | beta = sqrt(beta); |
| 2315 | if(alpha>0) |
| 2316 | beta = -beta; |
| 2317 | dD[1] = (beta-alpha) / beta; |
| 2318 | pT[1+ps*1] = - dD[1]; |
| 2319 | tmp = 1.0 / (alpha-beta); |
| 2320 | // |
| 2321 | pD[1+ps*1] = beta; |
| 2322 | w0 = pD[0+ps*1]; // |
| 2323 | w2 = pD[2+ps*1]; |
| 2324 | w3 = pD[3+ps*1]; |
| 2325 | // |
| 2326 | pD[1+ps*2] *= tmp; |
| 2327 | w0 += pD[0+ps*2] * pD[1+ps*2]; // |
| 2328 | w2 += pD[2+ps*2] * pD[1+ps*2]; |
| 2329 | w3 += pD[3+ps*2] * pD[1+ps*2]; |
| 2330 | // |
| 2331 | pD[1+ps*3] *= tmp; |
| 2332 | w0 += pD[0+ps*3] * pD[1+ps*3]; // |
| 2333 | w2 += pD[2+ps*3] * pD[1+ps*3]; |
| 2334 | w3 += pD[3+ps*3] * pD[1+ps*3]; |
| 2335 | // |
| 2336 | for(ii=4; ii<n; ii++) |
| 2337 | { |
| 2338 | pD[1+ps*ii] *= tmp; |
| 2339 | w0 += pD[0+ps*ii] * pD[1+ps*ii]; // |
| 2340 | w2 += pD[2+ps*ii] * pD[1+ps*ii]; |
| 2341 | w3 += pD[3+ps*ii] * pD[1+ps*ii]; |
| 2342 | } |
| 2343 | // |
| 2344 | pT[0+ps*1] = - dD[1] * (w0*pT[0+ps*0]); |
| 2345 | w2 = - dD[1] * w2; |
| 2346 | w3 = - dD[1] * w3; |
| 2347 | // |
| 2348 | pD[2+ps*1] += w2; |
| 2349 | pD[3+ps*1] += w3; |
| 2350 | // |
| 2351 | pD[2+ps*2] += w2 * pD[1+ps*2]; |
| 2352 | pD[3+ps*2] += w3 * pD[1+ps*2]; |
| 2353 | // |
| 2354 | pD[2+ps*3] += w2 * pD[1+ps*3]; |
| 2355 | pD[3+ps*3] += w3 * pD[1+ps*3]; |
| 2356 | beta = pD[2+ps*3] * pD[2+ps*3]; |
| 2357 | // |
| 2358 | for(ii=4; ii<n; ii++) |
| 2359 | { |
| 2360 | pD[2+ps*ii] += w2 * pD[1+ps*ii]; |
| 2361 | pD[3+ps*ii] += w3 * pD[1+ps*ii]; |
| 2362 | beta += pD[2+ps*ii] * pD[2+ps*ii]; |
| 2363 | } |
| 2364 | // third column |
| 2365 | col3: |
| 2366 | if(beta==0.0) |
| 2367 | { |
| 2368 | dD[2] = 0.0; |
| 2369 | tmp = 0.0; |
| 2370 | goto col4; |
| 2371 | } |
| 2372 | alpha = pD[2+ps*2]; |
| 2373 | beta += alpha*alpha; |
| 2374 | beta = sqrt(beta); |
| 2375 | if(alpha>0) |
| 2376 | beta = -beta; |
| 2377 | dD[2] = (beta-alpha) / beta; |
| 2378 | pT[2+ps*2] = - dD[2]; |
| 2379 | tmp = 1.0 / (alpha-beta); |
| 2380 | // |
| 2381 | pD[2+ps*2] = beta; |
| 2382 | w0 = pD[0+ps*2]; |
| 2383 | w1 = pD[1+ps*2]; |
| 2384 | w3 = pD[3+ps*2]; |
| 2385 | // |
| 2386 | pD[2+ps*3] *= tmp; |
| 2387 | w0 += pD[0+ps*3] * pD[2+ps*3]; |
| 2388 | w1 += pD[1+ps*3] * pD[2+ps*3]; |
| 2389 | w3 += pD[3+ps*3] * pD[2+ps*3]; |
| 2390 | // |
| 2391 | for(ii=4; ii<n; ii++) |
| 2392 | { |
| 2393 | pD[2+ps*ii] *= tmp; |
| 2394 | w0 += pD[0+ps*ii] * pD[2+ps*ii]; |
| 2395 | w1 += pD[1+ps*ii] * pD[2+ps*ii]; |
| 2396 | w3 += pD[3+ps*ii] * pD[2+ps*ii]; |
| 2397 | } |
| 2398 | // |
| 2399 | pT[1+ps*2] = - dD[2] * (w1*pT[1+ps*1]); |
| 2400 | pT[0+ps*2] = - dD[2] * (w0*pT[0+ps*0] + w1*pT[0+ps*1]); |
| 2401 | w3 = - dD[2] * w3; |
| 2402 | // |
| 2403 | pD[3+ps*2] += w3; |
| 2404 | // |
| 2405 | pD[3+ps*3] += w3 * pD[2+ps*3]; |
| 2406 | // |
| 2407 | beta = 0.0; |
| 2408 | for(ii=4; ii<n; ii++) |
| 2409 | { |
| 2410 | pD[3+ps*ii] += w3 * pD[2+ps*ii]; |
| 2411 | beta += pD[3+ps*ii] * pD[3+ps*ii]; |
| 2412 | } |
| 2413 | // fourth column |
| 2414 | col4: |
| 2415 | if(beta==0.0) |
| 2416 | { |
| 2417 | dD[3] = 0.0; |
| 2418 | tmp = 0.0; |
| 2419 | return; |
| 2420 | } |
| 2421 | alpha = pD[3+ps*3]; |
| 2422 | beta += alpha*alpha; |
| 2423 | beta = sqrt(beta); |
| 2424 | if(alpha>0) |
| 2425 | beta = -beta; |
| 2426 | dD[3] = (beta-alpha) / beta; |
| 2427 | pT[3+ps*3] = - dD[3]; |
| 2428 | tmp = 1.0 / (alpha-beta); |
| 2429 | // |
| 2430 | pD[3+ps*3] = beta; |
| 2431 | w0 = pD[0+ps*3]; |
| 2432 | w1 = pD[1+ps*3]; |
| 2433 | w2 = pD[2+ps*3]; |
| 2434 | // |
| 2435 | for(ii=4; ii<n; ii++) |
| 2436 | { |
| 2437 | pD[3+ps*ii] *= tmp; |
| 2438 | w0 += pD[0+ps*ii] * pD[3+ps*ii]; |
| 2439 | w1 += pD[1+ps*ii] * pD[3+ps*ii]; |
| 2440 | w2 += pD[2+ps*ii] * pD[3+ps*ii]; |
| 2441 | } |
| 2442 | // |
| 2443 | pT[2+ps*3] = - dD[3] * (w2*pT[2+ps*2]); |
| 2444 | pT[1+ps*3] = - dD[3] * (w1*pT[1+ps*1] + w2*pT[1+ps*2]); |
| 2445 | pT[0+ps*3] = - dD[3] * (w0*pT[0+ps*0] + w1*pT[0+ps*1] + w2*pT[0+ps*2]); |
| 2446 | return; |
| 2447 | } |
| 2448 | |
| 2449 | |
| 2450 | |
| 2451 | void kernel_dlarfb4_r_4_lib4(int kmax, double *pV, double *pT, double *pD) |
| 2452 | { |
| 2453 | const int ps = 4; |
| 2454 | double pW[16]; |
| 2455 | int kk; |
| 2456 | // 0 |
| 2457 | pW[0+ps*0] = pD[0+ps*0]; |
| 2458 | pW[1+ps*0] = pD[1+ps*0]; |
| 2459 | pW[2+ps*0] = pD[2+ps*0]; |
| 2460 | pW[3+ps*0] = pD[3+ps*0]; |
| 2461 | // 1 |
| 2462 | pW[0+ps*0] += pD[0+ps*1]*pV[0+ps*1]; |
| 2463 | pW[1+ps*0] += pD[1+ps*1]*pV[0+ps*1]; |
| 2464 | pW[2+ps*0] += pD[2+ps*1]*pV[0+ps*1]; |
| 2465 | pW[3+ps*0] += pD[3+ps*1]*pV[0+ps*1]; |
| 2466 | pW[0+ps*1] = pD[0+ps*1]; |
| 2467 | pW[1+ps*1] = pD[1+ps*1]; |
| 2468 | pW[2+ps*1] = pD[2+ps*1]; |
| 2469 | pW[3+ps*1] = pD[3+ps*1]; |
| 2470 | // 2 |
| 2471 | pW[0+ps*0] += pD[0+ps*2]*pV[0+ps*2]; |
| 2472 | pW[1+ps*0] += pD[1+ps*2]*pV[0+ps*2]; |
| 2473 | pW[2+ps*0] += pD[2+ps*2]*pV[0+ps*2]; |
| 2474 | pW[3+ps*0] += pD[3+ps*2]*pV[0+ps*2]; |
| 2475 | pW[0+ps*1] += pD[0+ps*2]*pV[1+ps*2]; |
| 2476 | pW[1+ps*1] += pD[1+ps*2]*pV[1+ps*2]; |
| 2477 | pW[2+ps*1] += pD[2+ps*2]*pV[1+ps*2]; |
| 2478 | pW[3+ps*1] += pD[3+ps*2]*pV[1+ps*2]; |
| 2479 | pW[0+ps*2] = pD[0+ps*2]; |
| 2480 | pW[1+ps*2] = pD[1+ps*2]; |
| 2481 | pW[2+ps*2] = pD[2+ps*2]; |
| 2482 | pW[3+ps*2] = pD[3+ps*2]; |
| 2483 | // 3 |
| 2484 | pW[0+ps*0] += pD[0+ps*3]*pV[0+ps*3]; |
| 2485 | pW[1+ps*0] += pD[1+ps*3]*pV[0+ps*3]; |
| 2486 | pW[2+ps*0] += pD[2+ps*3]*pV[0+ps*3]; |
| 2487 | pW[3+ps*0] += pD[3+ps*3]*pV[0+ps*3]; |
| 2488 | pW[0+ps*1] += pD[0+ps*3]*pV[1+ps*3]; |
| 2489 | pW[1+ps*1] += pD[1+ps*3]*pV[1+ps*3]; |
| 2490 | pW[2+ps*1] += pD[2+ps*3]*pV[1+ps*3]; |
| 2491 | pW[3+ps*1] += pD[3+ps*3]*pV[1+ps*3]; |
| 2492 | pW[0+ps*2] += pD[0+ps*3]*pV[2+ps*3]; |
| 2493 | pW[1+ps*2] += pD[1+ps*3]*pV[2+ps*3]; |
| 2494 | pW[2+ps*2] += pD[2+ps*3]*pV[2+ps*3]; |
| 2495 | pW[3+ps*2] += pD[3+ps*3]*pV[2+ps*3]; |
| 2496 | pW[0+ps*3] = pD[0+ps*3]; |
| 2497 | pW[1+ps*3] = pD[1+ps*3]; |
| 2498 | pW[2+ps*3] = pD[2+ps*3]; |
| 2499 | pW[3+ps*3] = pD[3+ps*3]; |
| 2500 | // |
| 2501 | for(kk=4; kk<kmax; kk++) |
| 2502 | { |
| 2503 | pW[0+ps*0] += pD[0+ps*kk]*pV[0+ps*kk]; |
| 2504 | pW[1+ps*0] += pD[1+ps*kk]*pV[0+ps*kk]; |
| 2505 | pW[2+ps*0] += pD[2+ps*kk]*pV[0+ps*kk]; |
| 2506 | pW[3+ps*0] += pD[3+ps*kk]*pV[0+ps*kk]; |
| 2507 | pW[0+ps*1] += pD[0+ps*kk]*pV[1+ps*kk]; |
| 2508 | pW[1+ps*1] += pD[1+ps*kk]*pV[1+ps*kk]; |
| 2509 | pW[2+ps*1] += pD[2+ps*kk]*pV[1+ps*kk]; |
| 2510 | pW[3+ps*1] += pD[3+ps*kk]*pV[1+ps*kk]; |
| 2511 | pW[0+ps*2] += pD[0+ps*kk]*pV[2+ps*kk]; |
| 2512 | pW[1+ps*2] += pD[1+ps*kk]*pV[2+ps*kk]; |
| 2513 | pW[2+ps*2] += pD[2+ps*kk]*pV[2+ps*kk]; |
| 2514 | pW[3+ps*2] += pD[3+ps*kk]*pV[2+ps*kk]; |
| 2515 | pW[0+ps*3] += pD[0+ps*kk]*pV[3+ps*kk]; |
| 2516 | pW[1+ps*3] += pD[1+ps*kk]*pV[3+ps*kk]; |
| 2517 | pW[2+ps*3] += pD[2+ps*kk]*pV[3+ps*kk]; |
| 2518 | pW[3+ps*3] += pD[3+ps*kk]*pV[3+ps*kk]; |
| 2519 | } |
| 2520 | // |
| 2521 | pW[0+ps*3] = pW[0+ps*0]*pT[0+ps*3] + pW[0+ps*1]*pT[1+ps*3] + pW[0+ps*2]*pT[2+ps*3] + pW[0+ps*3]*pT[3+ps*3]; |
| 2522 | pW[1+ps*3] = pW[1+ps*0]*pT[0+ps*3] + pW[1+ps*1]*pT[1+ps*3] + pW[1+ps*2]*pT[2+ps*3] + pW[1+ps*3]*pT[3+ps*3]; |
| 2523 | pW[2+ps*3] = pW[2+ps*0]*pT[0+ps*3] + pW[2+ps*1]*pT[1+ps*3] + pW[2+ps*2]*pT[2+ps*3] + pW[2+ps*3]*pT[3+ps*3]; |
| 2524 | pW[3+ps*3] = pW[3+ps*0]*pT[0+ps*3] + pW[3+ps*1]*pT[1+ps*3] + pW[3+ps*2]*pT[2+ps*3] + pW[3+ps*3]*pT[3+ps*3]; |
| 2525 | // |
| 2526 | pW[0+ps*2] = pW[0+ps*0]*pT[0+ps*2] + pW[0+ps*1]*pT[1+ps*2] + pW[0+ps*2]*pT[2+ps*2]; |
| 2527 | pW[1+ps*2] = pW[1+ps*0]*pT[0+ps*2] + pW[1+ps*1]*pT[1+ps*2] + pW[1+ps*2]*pT[2+ps*2]; |
| 2528 | pW[2+ps*2] = pW[2+ps*0]*pT[0+ps*2] + pW[2+ps*1]*pT[1+ps*2] + pW[2+ps*2]*pT[2+ps*2]; |
| 2529 | pW[3+ps*2] = pW[3+ps*0]*pT[0+ps*2] + pW[3+ps*1]*pT[1+ps*2] + pW[3+ps*2]*pT[2+ps*2]; |
| 2530 | // |
| 2531 | pW[0+ps*1] = pW[0+ps*0]*pT[0+ps*1] + pW[0+ps*1]*pT[1+ps*1]; |
| 2532 | pW[1+ps*1] = pW[1+ps*0]*pT[0+ps*1] + pW[1+ps*1]*pT[1+ps*1]; |
| 2533 | pW[2+ps*1] = pW[2+ps*0]*pT[0+ps*1] + pW[2+ps*1]*pT[1+ps*1]; |
| 2534 | pW[3+ps*1] = pW[3+ps*0]*pT[0+ps*1] + pW[3+ps*1]*pT[1+ps*1]; |
| 2535 | // |
| 2536 | pW[0+ps*0] = pW[0+ps*0]*pT[0+ps*0]; |
| 2537 | pW[1+ps*0] = pW[1+ps*0]*pT[0+ps*0]; |
| 2538 | pW[2+ps*0] = pW[2+ps*0]*pT[0+ps*0]; |
| 2539 | pW[3+ps*0] = pW[3+ps*0]*pT[0+ps*0]; |
| 2540 | // |
| 2541 | pD[0+ps*0] += pW[0+ps*0]; |
| 2542 | pD[1+ps*0] += pW[1+ps*0]; |
| 2543 | pD[2+ps*0] += pW[2+ps*0]; |
| 2544 | pD[3+ps*0] += pW[3+ps*0]; |
| 2545 | // |
| 2546 | pD[0+ps*1] += pW[0+ps*0]*pV[0+ps*1] + pW[0+ps*1]; |
| 2547 | pD[1+ps*1] += pW[1+ps*0]*pV[0+ps*1] + pW[1+ps*1]; |
| 2548 | pD[2+ps*1] += pW[2+ps*0]*pV[0+ps*1] + pW[2+ps*1]; |
| 2549 | pD[3+ps*1] += pW[3+ps*0]*pV[0+ps*1] + pW[3+ps*1]; |
| 2550 | // |
| 2551 | pD[0+ps*2] += pW[0+ps*0]*pV[0+ps*2] + pW[0+ps*1]*pV[1+ps*2] + pW[0+ps*2]; |
| 2552 | pD[1+ps*2] += pW[1+ps*0]*pV[0+ps*2] + pW[1+ps*1]*pV[1+ps*2] + pW[1+ps*2]; |
| 2553 | pD[2+ps*2] += pW[2+ps*0]*pV[0+ps*2] + pW[2+ps*1]*pV[1+ps*2] + pW[2+ps*2]; |
| 2554 | pD[3+ps*2] += pW[3+ps*0]*pV[0+ps*2] + pW[3+ps*1]*pV[1+ps*2] + pW[3+ps*2]; |
| 2555 | // |
| 2556 | pD[0+ps*3] += pW[0+ps*0]*pV[0+ps*3] + pW[0+ps*1]*pV[1+ps*3] + pW[0+ps*2]*pV[2+ps*3] + pW[0+ps*3]; |
| 2557 | pD[1+ps*3] += pW[1+ps*0]*pV[0+ps*3] + pW[1+ps*1]*pV[1+ps*3] + pW[1+ps*2]*pV[2+ps*3] + pW[1+ps*3]; |
| 2558 | pD[2+ps*3] += pW[2+ps*0]*pV[0+ps*3] + pW[2+ps*1]*pV[1+ps*3] + pW[2+ps*2]*pV[2+ps*3] + pW[2+ps*3]; |
| 2559 | pD[3+ps*3] += pW[3+ps*0]*pV[0+ps*3] + pW[3+ps*1]*pV[1+ps*3] + pW[3+ps*2]*pV[2+ps*3] + pW[3+ps*3]; |
| 2560 | for(kk=4; kk<kmax; kk++) |
| 2561 | { |
| 2562 | pD[0+ps*kk] += pW[0+ps*0]*pV[0+ps*kk] + pW[0+ps*1]*pV[1+ps*kk] + pW[0+ps*2]*pV[2+ps*kk] + pW[0+ps*3]*pV[3+ps*kk]; |
| 2563 | pD[1+ps*kk] += pW[1+ps*0]*pV[0+ps*kk] + pW[1+ps*1]*pV[1+ps*kk] + pW[1+ps*2]*pV[2+ps*kk] + pW[1+ps*3]*pV[3+ps*kk]; |
| 2564 | pD[2+ps*kk] += pW[2+ps*0]*pV[0+ps*kk] + pW[2+ps*1]*pV[1+ps*kk] + pW[2+ps*2]*pV[2+ps*kk] + pW[2+ps*3]*pV[3+ps*kk]; |
| 2565 | pD[3+ps*kk] += pW[3+ps*0]*pV[0+ps*kk] + pW[3+ps*1]*pV[1+ps*kk] + pW[3+ps*2]*pV[2+ps*kk] + pW[3+ps*3]*pV[3+ps*kk]; |
| 2566 | } |
| 2567 | return; |
| 2568 | } |
| 2569 | |
| 2570 | |
| 2571 | |
| 2572 | void kernel_dlarfb4_r_1_lib4(int kmax, double *pV, double *pT, double *pD) |
| 2573 | { |
| 2574 | const int ps = 4; |
| 2575 | double pW[16]; |
| 2576 | int kk; |
| 2577 | // 0 |
| 2578 | pW[0+ps*0] = pD[0+ps*0]; |
| 2579 | // 1 |
| 2580 | pW[0+ps*0] += pD[0+ps*1]*pV[0+ps*1]; |
| 2581 | pW[0+ps*1] = pD[0+ps*1]; |
| 2582 | // 2 |
| 2583 | pW[0+ps*0] += pD[0+ps*2]*pV[0+ps*2]; |
| 2584 | pW[0+ps*1] += pD[0+ps*2]*pV[1+ps*2]; |
| 2585 | pW[0+ps*2] = pD[0+ps*2]; |
| 2586 | // 3 |
| 2587 | pW[0+ps*0] += pD[0+ps*3]*pV[0+ps*3]; |
| 2588 | pW[0+ps*1] += pD[0+ps*3]*pV[1+ps*3]; |
| 2589 | pW[0+ps*2] += pD[0+ps*3]*pV[2+ps*3]; |
| 2590 | pW[0+ps*3] = pD[0+ps*3]; |
| 2591 | // |
| 2592 | for(kk=4; kk<kmax; kk++) |
| 2593 | { |
| 2594 | pW[0+ps*0] += pD[0+ps*kk]*pV[0+ps*kk]; |
| 2595 | pW[0+ps*1] += pD[0+ps*kk]*pV[1+ps*kk]; |
| 2596 | pW[0+ps*2] += pD[0+ps*kk]*pV[2+ps*kk]; |
| 2597 | pW[0+ps*3] += pD[0+ps*kk]*pV[3+ps*kk]; |
| 2598 | } |
| 2599 | // |
| 2600 | pW[0+ps*3] = pW[0+ps*0]*pT[0+ps*3] + pW[0+ps*1]*pT[1+ps*3] + pW[0+ps*2]*pT[2+ps*3] + pW[0+ps*3]*pT[3+ps*3]; |
| 2601 | // |
| 2602 | pW[0+ps*2] = pW[0+ps*0]*pT[0+ps*2] + pW[0+ps*1]*pT[1+ps*2] + pW[0+ps*2]*pT[2+ps*2]; |
| 2603 | // |
| 2604 | pW[0+ps*1] = pW[0+ps*0]*pT[0+ps*1] + pW[0+ps*1]*pT[1+ps*1]; |
| 2605 | // |
| 2606 | pW[0+ps*0] = pW[0+ps*0]*pT[0+ps*0]; |
| 2607 | // |
| 2608 | pD[0+ps*0] += pW[0+ps*0]; |
| 2609 | // |
| 2610 | pD[0+ps*1] += pW[0+ps*0]*pV[0+ps*1] + pW[0+ps*1]; |
| 2611 | // |
| 2612 | pD[0+ps*2] += pW[0+ps*0]*pV[0+ps*2] + pW[0+ps*1]*pV[1+ps*2] + pW[0+ps*2]; |
| 2613 | // |
| 2614 | pD[0+ps*3] += pW[0+ps*0]*pV[0+ps*3] + pW[0+ps*1]*pV[1+ps*3] + pW[0+ps*2]*pV[2+ps*3] + pW[0+ps*3]; |
| 2615 | for(kk=4; kk<kmax; kk++) |
| 2616 | { |
| 2617 | pD[0+ps*kk] += pW[0+ps*0]*pV[0+ps*kk] + pW[0+ps*1]*pV[1+ps*kk] + pW[0+ps*2]*pV[2+ps*kk] + pW[0+ps*3]*pV[3+ps*kk]; |
| 2618 | } |
| 2619 | return; |
| 2620 | } |