Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #include "main.h" |
| 12 | #include <Eigen/Geometry> |
| 13 | #include <Eigen/LU> |
| 14 | #include <Eigen/SVD> |
| 15 | |
| 16 | template<typename T> T bounded_acos(T v) |
| 17 | { |
| 18 | using std::acos; |
| 19 | using std::min; |
| 20 | using std::max; |
| 21 | return acos((max)(T(-1),(min)(v,T(1)))); |
| 22 | } |
| 23 | |
| 24 | template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) |
| 25 | { |
| 26 | using std::abs; |
| 27 | typedef typename QuatType::Scalar Scalar; |
| 28 | typedef AngleAxis<Scalar> AA; |
| 29 | |
| 30 | Scalar largeEps = test_precision<Scalar>(); |
| 31 | |
| 32 | Scalar theta_tot = AA(q1*q0.inverse()).angle(); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 33 | if(theta_tot>Scalar(EIGEN_PI)) |
| 34 | theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 35 | for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1)) |
| 36 | { |
| 37 | QuatType q = q0.slerp(t,q1); |
| 38 | Scalar theta = AA(q*q0.inverse()).angle(); |
| 39 | VERIFY(abs(q.norm() - 1) < largeEps); |
| 40 | if(theta_tot==0) VERIFY(theta_tot==0); |
| 41 | else VERIFY(abs(theta - t * theta_tot) < largeEps); |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | template<typename Scalar, int Options> void quaternion(void) |
| 46 | { |
| 47 | /* this test covers the following files: |
| 48 | Quaternion.h |
| 49 | */ |
| 50 | using std::abs; |
| 51 | typedef Matrix<Scalar,3,1> Vector3; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 52 | typedef Matrix<Scalar,3,3> Matrix3; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 53 | typedef Quaternion<Scalar,Options> Quaternionx; |
| 54 | typedef AngleAxis<Scalar> AngleAxisx; |
| 55 | |
| 56 | Scalar largeEps = test_precision<Scalar>(); |
| 57 | if (internal::is_same<Scalar,float>::value) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 58 | largeEps = Scalar(1e-3); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 59 | |
| 60 | Scalar eps = internal::random<Scalar>() * Scalar(1e-2); |
| 61 | |
| 62 | Vector3 v0 = Vector3::Random(), |
| 63 | v1 = Vector3::Random(), |
| 64 | v2 = Vector3::Random(), |
| 65 | v3 = Vector3::Random(); |
| 66 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 67 | Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)), |
| 68 | b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 69 | |
| 70 | // Quaternion: Identity(), setIdentity(); |
| 71 | Quaternionx q1, q2; |
| 72 | q2.setIdentity(); |
| 73 | VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); |
| 74 | q1.coeffs().setRandom(); |
| 75 | VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); |
| 76 | |
| 77 | // concatenation |
| 78 | q1 *= q2; |
| 79 | |
| 80 | q1 = AngleAxisx(a, v0.normalized()); |
| 81 | q2 = AngleAxisx(a, v1.normalized()); |
| 82 | |
| 83 | // angular distance |
| 84 | Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 85 | if (refangle>Scalar(EIGEN_PI)) |
| 86 | refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 87 | |
| 88 | if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) |
| 89 | { |
| 90 | VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); |
| 91 | } |
| 92 | |
| 93 | // rotation matrix conversion |
| 94 | VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); |
| 95 | VERIFY_IS_APPROX(q1 * q2 * v2, |
| 96 | q1.toRotationMatrix() * q2.toRotationMatrix() * v2); |
| 97 | |
| 98 | VERIFY( (q2*q1).isApprox(q1*q2, largeEps) |
| 99 | || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); |
| 100 | |
| 101 | q2 = q1.toRotationMatrix(); |
| 102 | VERIFY_IS_APPROX(q1*v1,q2*v1); |
| 103 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 104 | Matrix3 rot1(q1); |
| 105 | VERIFY_IS_APPROX(q1*v1,rot1*v1); |
| 106 | Quaternionx q3(rot1.transpose()*rot1); |
| 107 | VERIFY_IS_APPROX(q3*v1,v1); |
| 108 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 109 | |
| 110 | // angle-axis conversion |
| 111 | AngleAxisx aa = AngleAxisx(q1); |
| 112 | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); |
| 113 | |
| 114 | // Do not execute the test if the rotation angle is almost zero, or |
| 115 | // the rotation axis and v1 are almost parallel. |
| 116 | if (abs(aa.angle()) > 5*test_precision<Scalar>() |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 117 | && (aa.axis() - v1.normalized()).norm() < Scalar(1.99) |
| 118 | && (aa.axis() + v1.normalized()).norm() < Scalar(1.99)) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 119 | { |
| 120 | VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); |
| 121 | } |
| 122 | |
| 123 | // from two vector creation |
| 124 | VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); |
| 125 | VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); |
| 126 | VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); |
| 127 | if (internal::is_same<Scalar,double>::value) |
| 128 | { |
| 129 | v3 = (v1.array()+eps).matrix(); |
| 130 | VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); |
| 131 | VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); |
| 132 | } |
| 133 | |
| 134 | // from two vector creation static function |
| 135 | VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); |
| 136 | VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); |
| 137 | VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); |
| 138 | if (internal::is_same<Scalar,double>::value) |
| 139 | { |
| 140 | v3 = (v1.array()+eps).matrix(); |
| 141 | VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); |
| 142 | VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); |
| 143 | } |
| 144 | |
| 145 | // inverse and conjugate |
| 146 | VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); |
| 147 | VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); |
| 148 | |
| 149 | // test casting |
| 150 | Quaternion<float> q1f = q1.template cast<float>(); |
| 151 | VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); |
| 152 | Quaternion<double> q1d = q1.template cast<double>(); |
| 153 | VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); |
| 154 | |
| 155 | // test bug 369 - improper alignment. |
| 156 | Quaternionx *q = new Quaternionx; |
| 157 | delete q; |
| 158 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 159 | q1 = Quaternionx::UnitRandom(); |
| 160 | q2 = Quaternionx::UnitRandom(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 161 | check_slerp(q1,q2); |
| 162 | |
| 163 | q1 = AngleAxisx(b, v1.normalized()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 164 | q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized()); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 165 | check_slerp(q1,q2); |
| 166 | |
| 167 | q1 = AngleAxisx(b, v1.normalized()); |
| 168 | q2 = AngleAxisx(-b, -v1.normalized()); |
| 169 | check_slerp(q1,q2); |
| 170 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 171 | q1 = Quaternionx::UnitRandom(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 172 | q2.coeffs() = -q1.coeffs(); |
| 173 | check_slerp(q1,q2); |
| 174 | } |
| 175 | |
| 176 | template<typename Scalar> void mapQuaternion(void){ |
| 177 | typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; |
| 178 | typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; |
| 179 | typedef Map<Quaternion<Scalar> > MQuaternionUA; |
| 180 | typedef Map<const Quaternion<Scalar> > MCQuaternionUA; |
| 181 | typedef Quaternion<Scalar> Quaternionx; |
| 182 | typedef Matrix<Scalar,3,1> Vector3; |
| 183 | typedef AngleAxis<Scalar> AngleAxisx; |
| 184 | |
| 185 | Vector3 v0 = Vector3::Random(), |
| 186 | v1 = Vector3::Random(); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 187 | Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 188 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 189 | EIGEN_ALIGN_MAX Scalar array1[4]; |
| 190 | EIGEN_ALIGN_MAX Scalar array2[4]; |
| 191 | EIGEN_ALIGN_MAX Scalar array3[4+1]; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 192 | Scalar* array3unaligned = array3+1; |
| 193 | |
| 194 | MQuaternionA mq1(array1); |
| 195 | MCQuaternionA mcq1(array1); |
| 196 | MQuaternionA mq2(array2); |
| 197 | MQuaternionUA mq3(array3unaligned); |
| 198 | MCQuaternionUA mcq3(array3unaligned); |
| 199 | |
| 200 | // std::cerr << array1 << " " << array2 << " " << array3 << "\n"; |
| 201 | mq1 = AngleAxisx(a, v0.normalized()); |
| 202 | mq2 = mq1; |
| 203 | mq3 = mq1; |
| 204 | |
| 205 | Quaternionx q1 = mq1; |
| 206 | Quaternionx q2 = mq2; |
| 207 | Quaternionx q3 = mq3; |
| 208 | Quaternionx q4 = MCQuaternionUA(array3unaligned); |
| 209 | |
| 210 | VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); |
| 211 | VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); |
| 212 | VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); |
| 213 | #ifdef EIGEN_VECTORIZE |
| 214 | if(internal::packet_traits<Scalar>::Vectorizable) |
| 215 | VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned))); |
| 216 | #endif |
| 217 | |
| 218 | VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); |
| 219 | VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); |
| 220 | |
| 221 | VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); |
| 222 | VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); |
| 223 | |
| 224 | VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); |
| 225 | VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); |
| 226 | |
| 227 | VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); |
| 228 | VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); |
| 229 | |
| 230 | VERIFY_IS_APPROX(mq1*mq2, q1*q2); |
| 231 | VERIFY_IS_APPROX(mq3*mq2, q3*q2); |
| 232 | VERIFY_IS_APPROX(mcq1*mq2, q1*q2); |
| 233 | VERIFY_IS_APPROX(mcq3*mq2, q3*q2); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 234 | |
| 235 | // Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks: |
| 236 | VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum()); |
| 237 | VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum()); |
| 238 | mq3.w() = 1; |
| 239 | const Quaternionx& cq3(q3); |
| 240 | VERIFY( &cq3.x() == &q3.x() ); |
| 241 | const MQuaternionUA& cmq3(mq3); |
| 242 | VERIFY( &cmq3.x() == &mq3.x() ); |
| 243 | // FIXME the following should be ok. The problem is that currently the LValueBit flag |
| 244 | // is used to determine wether we can return a coeff by reference or not, which is not enough for Map<const ...>. |
| 245 | //const MCQuaternionUA& cmcq3(mcq3); |
| 246 | //VERIFY( &cmcq3.x() == &mcq3.x() ); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 247 | } |
| 248 | |
| 249 | template<typename Scalar> void quaternionAlignment(void){ |
| 250 | typedef Quaternion<Scalar,AutoAlign> QuaternionA; |
| 251 | typedef Quaternion<Scalar,DontAlign> QuaternionUA; |
| 252 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 253 | EIGEN_ALIGN_MAX Scalar array1[4]; |
| 254 | EIGEN_ALIGN_MAX Scalar array2[4]; |
| 255 | EIGEN_ALIGN_MAX Scalar array3[4+1]; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 256 | Scalar* arrayunaligned = array3+1; |
| 257 | |
| 258 | QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; |
| 259 | QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; |
| 260 | QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; |
| 261 | |
| 262 | q1->coeffs().setRandom(); |
| 263 | *q2 = *q1; |
| 264 | *q3 = *q1; |
| 265 | |
| 266 | VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); |
| 267 | VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 268 | #if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0 |
| 269 | if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 270 | VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA)); |
| 271 | #endif |
| 272 | } |
| 273 | |
| 274 | template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) |
| 275 | { |
| 276 | // there's a lot that we can't test here while still having this test compile! |
| 277 | // the only possible approach would be to run a script trying to compile stuff and checking that it fails. |
| 278 | // CMake can help with that. |
| 279 | |
| 280 | // verify that map-to-const don't have LvalueBit |
| 281 | typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; |
| 282 | VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); |
| 283 | VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); |
| 284 | VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); |
| 285 | VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); |
| 286 | } |
| 287 | |
| 288 | void test_geo_quaternion() |
| 289 | { |
| 290 | for(int i = 0; i < g_repeat; i++) { |
| 291 | CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); |
| 292 | CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); |
| 293 | CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); |
| 294 | CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); |
| 295 | CALL_SUBTEST_3(( quaternion<float,DontAlign>() )); |
| 296 | CALL_SUBTEST_4(( quaternion<double,DontAlign>() )); |
| 297 | CALL_SUBTEST_5(( quaternionAlignment<float>() )); |
| 298 | CALL_SUBTEST_6(( quaternionAlignment<double>() )); |
| 299 | CALL_SUBTEST_1( mapQuaternion<float>() ); |
| 300 | CALL_SUBTEST_2( mapQuaternion<double>() ); |
| 301 | } |
| 302 | } |