blob: 37032d2205ff3f45e1ab56e5e3f328582ec346d1 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#define EIGEN_NO_STATIC_ASSERT
11
12#include "main.h"
13
14template<bool IsInteger> struct adjoint_specific;
15
16template<> struct adjoint_specific<true> {
17 template<typename Vec, typename Mat, typename Scalar>
18 static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
19 VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
20 VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0));
21
22 // check compatibility of dot and adjoint
23 VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
24 }
25};
26
27template<> struct adjoint_specific<false> {
28 template<typename Vec, typename Mat, typename Scalar>
29 static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
30 typedef typename NumTraits<Scalar>::Real RealScalar;
31 using std::abs;
32
33 RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
34 VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
35 VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
36
37 VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
38 // check normalized() and normalize()
39 VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
40 v3 = v1;
41 v3.normalize();
42 VERIFY_IS_APPROX(v1, v1.norm() * v3);
43 VERIFY_IS_APPROX(v3, v1.normalized());
44 VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
Austin Schuh189376f2018-12-20 22:11:15 +110045
46 // check null inputs
47 VERIFY_IS_APPROX((v1*0).normalized(), (v1*0));
48#if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE)
49 RealScalar very_small = (std::numeric_limits<RealScalar>::min)();
50 VERIFY( (v1*very_small).norm() == 0 );
51 VERIFY_IS_APPROX((v1*very_small).normalized(), (v1*very_small));
52 v3 = v1*very_small;
53 v3.normalize();
54 VERIFY_IS_APPROX(v3, (v1*very_small));
55#endif
Brian Silverman72890c22015-09-19 14:37:37 -040056
57 // check compatibility of dot and adjoint
58 ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
59 VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
60
61 // check that Random().normalized() works: tricky as the random xpr must be evaluated by
62 // normalized() in order to produce a consistent result.
63 VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
64 }
65};
66
67template<typename MatrixType> void adjoint(const MatrixType& m)
68{
69 /* this test covers the following files:
70 Transpose.h Conjugate.h Dot.h
71 */
72 using std::abs;
Brian Silverman72890c22015-09-19 14:37:37 -040073 typedef typename MatrixType::Scalar Scalar;
74 typedef typename NumTraits<Scalar>::Real RealScalar;
75 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
76 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
Austin Schuh189376f2018-12-20 22:11:15 +110077 const Index PacketSize = internal::packet_traits<Scalar>::size;
Brian Silverman72890c22015-09-19 14:37:37 -040078
79 Index rows = m.rows();
80 Index cols = m.cols();
81
82 MatrixType m1 = MatrixType::Random(rows, cols),
83 m2 = MatrixType::Random(rows, cols),
84 m3(rows, cols),
85 square = SquareMatrixType::Random(rows, rows);
86 VectorType v1 = VectorType::Random(rows),
87 v2 = VectorType::Random(rows),
88 v3 = VectorType::Random(rows),
89 vzero = VectorType::Zero(rows);
90
91 Scalar s1 = internal::random<Scalar>(),
92 s2 = internal::random<Scalar>();
93
94 // check basic compatibility of adjoint, transpose, conjugate
95 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
96 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
97
98 // check multiplicative behavior
99 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
100 VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
101
102 // check basic properties of dot, squaredNorm
103 VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
104 VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
105
106 adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
107
108 VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
109
110 // like in testBasicStuff, test operator() to check const-qualification
111 Index r = internal::random<Index>(0, rows-1),
112 c = internal::random<Index>(0, cols-1);
113 VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
114 VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
115
116 // check inplace transpose
117 m3 = m1;
118 m3.transposeInPlace();
119 VERIFY_IS_APPROX(m3,m1.transpose());
120 m3.transposeInPlace();
121 VERIFY_IS_APPROX(m3,m1);
Austin Schuh189376f2018-12-20 22:11:15 +1100122
123 if(PacketSize<m3.rows() && PacketSize<m3.cols())
124 {
125 m3 = m1;
126 Index i = internal::random<Index>(0,m3.rows()-PacketSize);
127 Index j = internal::random<Index>(0,m3.cols()-PacketSize);
128 m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
129 VERIFY_IS_APPROX( (m3.template block<PacketSize,PacketSize>(i,j)), (m1.template block<PacketSize,PacketSize>(i,j).transpose()) );
130 m3.template block<PacketSize,PacketSize>(i,j).transposeInPlace();
131 VERIFY_IS_APPROX(m3,m1);
132 }
Brian Silverman72890c22015-09-19 14:37:37 -0400133
134 // check inplace adjoint
135 m3 = m1;
136 m3.adjointInPlace();
137 VERIFY_IS_APPROX(m3,m1.adjoint());
138 m3.transposeInPlace();
139 VERIFY_IS_APPROX(m3,m1.conjugate());
140
141 // check mixed dot product
142 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
143 RealVectorType rv1 = RealVectorType::Random(rows);
144 VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
145 VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
146}
147
148void test_adjoint()
149{
150 for(int i = 0; i < g_repeat; i++) {
151 CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
152 CALL_SUBTEST_2( adjoint(Matrix3d()) );
153 CALL_SUBTEST_3( adjoint(Matrix4f()) );
Austin Schuh189376f2018-12-20 22:11:15 +1100154
Brian Silverman72890c22015-09-19 14:37:37 -0400155 CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
156 CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
157 CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
Austin Schuh189376f2018-12-20 22:11:15 +1100158
159 // Complement for 128 bits vectorization:
160 CALL_SUBTEST_8( adjoint(Matrix2d()) );
161 CALL_SUBTEST_9( adjoint(Matrix<int,4,4>()) );
162
163 // 256 bits vectorization:
164 CALL_SUBTEST_10( adjoint(Matrix<float,8,8>()) );
165 CALL_SUBTEST_11( adjoint(Matrix<double,4,4>()) );
166 CALL_SUBTEST_12( adjoint(Matrix<int,8,8>()) );
Brian Silverman72890c22015-09-19 14:37:37 -0400167 }
168 // test a large static matrix only once
169 CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
170
Austin Schuh189376f2018-12-20 22:11:15 +1100171#ifdef EIGEN_TEST_PART_13
Brian Silverman72890c22015-09-19 14:37:37 -0400172 {
173 MatrixXcf a(10,10), b(10,10);
174 VERIFY_RAISES_ASSERT(a = a.transpose());
175 VERIFY_RAISES_ASSERT(a = a.transpose() + b);
176 VERIFY_RAISES_ASSERT(a = b + a.transpose());
177 VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
178 VERIFY_RAISES_ASSERT(a = a.adjoint());
179 VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
180 VERIFY_RAISES_ASSERT(a = b + a.adjoint());
181
182 // no assertion should be triggered for these cases:
183 a.transpose() = a.transpose();
184 a.transpose() += a.transpose();
185 a.transpose() += a.transpose() + b;
186 a.transpose() = a.adjoint();
187 a.transpose() += a.adjoint();
188 a.transpose() += a.adjoint() + b;
Austin Schuh189376f2018-12-20 22:11:15 +1100189
190 // regression tests for check_for_aliasing
191 MatrixXd c(10,10);
192 c = 1.0 * MatrixXd::Ones(10,10) + c;
193 c = MatrixXd::Ones(10,10) * 1.0 + c;
194 c = c + MatrixXd::Ones(10,10) .cwiseProduct( MatrixXd::Zero(10,10) );
195 c = MatrixXd::Ones(10,10) * MatrixXd::Zero(10,10);
Brian Silverman72890c22015-09-19 14:37:37 -0400196 }
197#endif
198}
199