Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> |
| 6 | // Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| 7 | // |
| 8 | // This Source Code Form is subject to the terms of the Mozilla |
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 11 | |
| 12 | #include "sparse.h" |
| 13 | |
| 14 | template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) |
| 15 | { |
| 16 | typedef typename SparseMatrixType::Index Index; |
| 17 | typedef Matrix<Index,2,1> Vector2; |
| 18 | |
| 19 | const Index rows = ref.rows(); |
| 20 | const Index cols = ref.cols(); |
| 21 | typedef typename SparseMatrixType::Scalar Scalar; |
| 22 | enum { Flags = SparseMatrixType::Flags }; |
| 23 | |
| 24 | double density = (std::max)(8./(rows*cols), 0.01); |
| 25 | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| 26 | typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| 27 | typedef Matrix<Scalar,1,Dynamic> RowDenseVector; |
| 28 | Scalar eps = 1e-6; |
| 29 | |
| 30 | Scalar s1 = internal::random<Scalar>(); |
| 31 | { |
| 32 | SparseMatrixType m(rows, cols); |
| 33 | DenseMatrix refMat = DenseMatrix::Zero(rows, cols); |
| 34 | DenseVector vec1 = DenseVector::Random(rows); |
| 35 | |
| 36 | std::vector<Vector2> zeroCoords; |
| 37 | std::vector<Vector2> nonzeroCoords; |
| 38 | initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); |
| 39 | |
| 40 | if (zeroCoords.size()==0 || nonzeroCoords.size()==0) |
| 41 | return; |
| 42 | |
| 43 | // test coeff and coeffRef |
| 44 | for (int i=0; i<(int)zeroCoords.size(); ++i) |
| 45 | { |
| 46 | VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); |
| 47 | if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) |
| 48 | VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); |
| 49 | } |
| 50 | VERIFY_IS_APPROX(m, refMat); |
| 51 | |
| 52 | m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| 53 | refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); |
| 54 | |
| 55 | VERIFY_IS_APPROX(m, refMat); |
| 56 | |
| 57 | // test InnerIterators and Block expressions |
| 58 | for (int t=0; t<10; ++t) |
| 59 | { |
| 60 | int j = internal::random<int>(0,cols-1); |
| 61 | int i = internal::random<int>(0,rows-1); |
| 62 | int w = internal::random<int>(1,cols-j-1); |
| 63 | int h = internal::random<int>(1,rows-i-1); |
| 64 | |
| 65 | VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); |
| 66 | for(int c=0; c<w; c++) |
| 67 | { |
| 68 | VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); |
| 69 | for(int r=0; r<h; r++) |
| 70 | { |
| 71 | VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); |
| 72 | VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); |
| 73 | } |
| 74 | } |
| 75 | for(int r=0; r<h; r++) |
| 76 | { |
| 77 | VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); |
| 78 | for(int c=0; c<w; c++) |
| 79 | { |
| 80 | VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); |
| 81 | VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w)); |
| 86 | VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h)); |
| 87 | for(int r=0; r<h; r++) |
| 88 | { |
| 89 | VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r)); |
| 90 | VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r)); |
| 91 | for(int c=0; c<w; c++) |
| 92 | { |
| 93 | VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); |
| 94 | VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); |
| 95 | |
| 96 | VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c)); |
| 97 | VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); |
| 98 | if(m.middleCols(j,w).coeff(r,c) != Scalar(0)) |
| 99 | { |
| 100 | VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c)); |
| 101 | } |
| 102 | if(m.middleRows(i,h).coeff(r,c) != Scalar(0)) |
| 103 | { |
| 104 | VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); |
| 105 | } |
| 106 | } |
| 107 | } |
| 108 | for(int c=0; c<w; c++) |
| 109 | { |
| 110 | VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c)); |
| 111 | VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c)); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | for(int c=0; c<cols; c++) |
| 116 | { |
| 117 | VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); |
| 118 | VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); |
| 119 | } |
| 120 | |
| 121 | for(int r=0; r<rows; r++) |
| 122 | { |
| 123 | VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); |
| 124 | VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); |
| 125 | } |
| 126 | |
| 127 | |
| 128 | // test assertion |
| 129 | VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); |
| 130 | VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); |
| 131 | } |
| 132 | |
| 133 | // test insert (inner random) |
| 134 | { |
| 135 | DenseMatrix m1(rows,cols); |
| 136 | m1.setZero(); |
| 137 | SparseMatrixType m2(rows,cols); |
| 138 | if(internal::random<int>()%2) |
| 139 | m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); |
| 140 | for (Index j=0; j<cols; ++j) |
| 141 | { |
| 142 | for (Index k=0; k<rows/2; ++k) |
| 143 | { |
| 144 | Index i = internal::random<Index>(0,rows-1); |
| 145 | if (m1.coeff(i,j)==Scalar(0)) |
| 146 | m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); |
| 147 | } |
| 148 | } |
| 149 | m2.finalize(); |
| 150 | VERIFY_IS_APPROX(m2,m1); |
| 151 | } |
| 152 | |
| 153 | // test insert (fully random) |
| 154 | { |
| 155 | DenseMatrix m1(rows,cols); |
| 156 | m1.setZero(); |
| 157 | SparseMatrixType m2(rows,cols); |
| 158 | if(internal::random<int>()%2) |
| 159 | m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); |
| 160 | for (int k=0; k<rows*cols; ++k) |
| 161 | { |
| 162 | Index i = internal::random<Index>(0,rows-1); |
| 163 | Index j = internal::random<Index>(0,cols-1); |
| 164 | if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) |
| 165 | m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); |
| 166 | else |
| 167 | { |
| 168 | Scalar v = internal::random<Scalar>(); |
| 169 | m2.coeffRef(i,j) += v; |
| 170 | m1(i,j) += v; |
| 171 | } |
| 172 | } |
| 173 | VERIFY_IS_APPROX(m2,m1); |
| 174 | } |
| 175 | |
| 176 | // test insert (un-compressed) |
| 177 | for(int mode=0;mode<4;++mode) |
| 178 | { |
| 179 | DenseMatrix m1(rows,cols); |
| 180 | m1.setZero(); |
| 181 | SparseMatrixType m2(rows,cols); |
| 182 | VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8))); |
| 183 | m2.reserve(r); |
| 184 | for (int k=0; k<rows*cols; ++k) |
| 185 | { |
| 186 | Index i = internal::random<Index>(0,rows-1); |
| 187 | Index j = internal::random<Index>(0,cols-1); |
| 188 | if (m1.coeff(i,j)==Scalar(0)) |
| 189 | m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); |
| 190 | if(mode==3) |
| 191 | m2.reserve(r); |
| 192 | } |
| 193 | if(internal::random<int>()%2) |
| 194 | m2.makeCompressed(); |
| 195 | VERIFY_IS_APPROX(m2,m1); |
| 196 | } |
| 197 | |
| 198 | // test innerVector() |
| 199 | { |
| 200 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 201 | SparseMatrixType m2(rows, rows); |
| 202 | initSparse<Scalar>(density, refMat2, m2); |
| 203 | Index j0 = internal::random<Index>(0,rows-1); |
| 204 | Index j1 = internal::random<Index>(0,rows-1); |
| 205 | if(SparseMatrixType::IsRowMajor) |
| 206 | VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0)); |
| 207 | else |
| 208 | VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); |
| 209 | |
| 210 | if(SparseMatrixType::IsRowMajor) |
| 211 | VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1)); |
| 212 | else |
| 213 | VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); |
| 214 | |
| 215 | SparseMatrixType m3(rows,rows); |
| 216 | m3.reserve(VectorXi::Constant(rows,rows/2)); |
| 217 | for(Index j=0; j<rows; ++j) |
| 218 | for(Index k=0; k<j; ++k) |
| 219 | m3.insertByOuterInner(j,k) = k+1; |
| 220 | for(Index j=0; j<rows; ++j) |
| 221 | { |
| 222 | VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); |
| 223 | if(j>0) |
| 224 | VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); |
| 225 | } |
| 226 | m3.makeCompressed(); |
| 227 | for(Index j=0; j<rows; ++j) |
| 228 | { |
| 229 | VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); |
| 230 | if(j>0) |
| 231 | VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); |
| 232 | } |
| 233 | |
| 234 | //m2.innerVector(j0) = 2*m2.innerVector(j1); |
| 235 | //refMat2.col(j0) = 2*refMat2.col(j1); |
| 236 | //VERIFY_IS_APPROX(m2, refMat2); |
| 237 | } |
| 238 | |
| 239 | // test innerVectors() |
| 240 | { |
| 241 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 242 | SparseMatrixType m2(rows, rows); |
| 243 | initSparse<Scalar>(density, refMat2, m2); |
| 244 | if(internal::random<float>(0,1)>0.5) m2.makeCompressed(); |
| 245 | |
| 246 | Index j0 = internal::random<Index>(0,rows-2); |
| 247 | Index j1 = internal::random<Index>(0,rows-2); |
| 248 | Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1)); |
| 249 | if(SparseMatrixType::IsRowMajor) |
| 250 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); |
| 251 | else |
| 252 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); |
| 253 | if(SparseMatrixType::IsRowMajor) |
| 254 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), |
| 255 | refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); |
| 256 | else |
| 257 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), |
| 258 | refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); |
| 259 | |
| 260 | VERIFY_IS_APPROX(m2, refMat2); |
| 261 | |
| 262 | m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); |
| 263 | if(SparseMatrixType::IsRowMajor) |
| 264 | refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); |
| 265 | else |
| 266 | refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); |
| 267 | |
| 268 | VERIFY_IS_APPROX(m2, refMat2); |
| 269 | |
| 270 | } |
| 271 | |
| 272 | // test basic computations |
| 273 | { |
| 274 | DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); |
| 275 | DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); |
| 276 | DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); |
| 277 | DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); |
| 278 | SparseMatrixType m1(rows, rows); |
| 279 | SparseMatrixType m2(rows, rows); |
| 280 | SparseMatrixType m3(rows, rows); |
| 281 | SparseMatrixType m4(rows, rows); |
| 282 | initSparse<Scalar>(density, refM1, m1); |
| 283 | initSparse<Scalar>(density, refM2, m2); |
| 284 | initSparse<Scalar>(density, refM3, m3); |
| 285 | initSparse<Scalar>(density, refM4, m4); |
| 286 | |
| 287 | VERIFY_IS_APPROX(m1+m2, refM1+refM2); |
| 288 | VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); |
| 289 | VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); |
| 290 | VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); |
| 291 | |
| 292 | VERIFY_IS_APPROX(m1*=s1, refM1*=s1); |
| 293 | VERIFY_IS_APPROX(m1/=s1, refM1/=s1); |
| 294 | |
| 295 | VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); |
| 296 | VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); |
| 297 | |
| 298 | if(SparseMatrixType::IsRowMajor) |
| 299 | VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); |
| 300 | else |
| 301 | VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0))); |
| 302 | |
| 303 | VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); |
| 304 | VERIFY_IS_APPROX(m1.real(), refM1.real()); |
| 305 | |
| 306 | refM4.setRandom(); |
| 307 | // sparse cwise* dense |
| 308 | VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); |
| 309 | // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); |
| 310 | |
| 311 | // test aliasing |
| 312 | VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); |
| 313 | VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); |
| 314 | VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); |
| 315 | VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); |
| 316 | } |
| 317 | |
| 318 | // test transpose |
| 319 | { |
| 320 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 321 | SparseMatrixType m2(rows, rows); |
| 322 | initSparse<Scalar>(density, refMat2, m2); |
| 323 | VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); |
| 324 | VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); |
| 325 | |
| 326 | VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); |
| 327 | } |
| 328 | |
| 329 | |
| 330 | |
| 331 | // test generic blocks |
| 332 | { |
| 333 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 334 | SparseMatrixType m2(rows, rows); |
| 335 | initSparse<Scalar>(density, refMat2, m2); |
| 336 | Index j0 = internal::random<Index>(0,rows-2); |
| 337 | Index j1 = internal::random<Index>(0,rows-2); |
| 338 | Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1)); |
| 339 | if(SparseMatrixType::IsRowMajor) |
| 340 | VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); |
| 341 | else |
| 342 | VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); |
| 343 | |
| 344 | if(SparseMatrixType::IsRowMajor) |
| 345 | VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), |
| 346 | refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); |
| 347 | else |
| 348 | VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), |
| 349 | refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); |
| 350 | |
| 351 | Index i = internal::random<Index>(0,m2.outerSize()-1); |
| 352 | if(SparseMatrixType::IsRowMajor) { |
| 353 | m2.innerVector(i) = m2.innerVector(i) * s1; |
| 354 | refMat2.row(i) = refMat2.row(i) * s1; |
| 355 | VERIFY_IS_APPROX(m2,refMat2); |
| 356 | } else { |
| 357 | m2.innerVector(i) = m2.innerVector(i) * s1; |
| 358 | refMat2.col(i) = refMat2.col(i) * s1; |
| 359 | VERIFY_IS_APPROX(m2,refMat2); |
| 360 | } |
| 361 | |
| 362 | VERIFY_IS_APPROX(DenseVector(m2.col(j0)), refMat2.col(j0)); |
| 363 | VERIFY_IS_APPROX(m2.col(j0), refMat2.col(j0)); |
| 364 | |
| 365 | VERIFY_IS_APPROX(RowDenseVector(m2.row(j0)), refMat2.row(j0)); |
| 366 | VERIFY_IS_APPROX(m2.row(j0), refMat2.row(j0)); |
| 367 | |
| 368 | VERIFY_IS_APPROX(m2.block(j0,j1,n0,n0), refMat2.block(j0,j1,n0,n0)); |
| 369 | VERIFY_IS_APPROX((2*m2).block(j0,j1,n0,n0), (2*refMat2).block(j0,j1,n0,n0)); |
| 370 | } |
| 371 | |
| 372 | // test prune |
| 373 | { |
| 374 | SparseMatrixType m2(rows, rows); |
| 375 | DenseMatrix refM2(rows, rows); |
| 376 | refM2.setZero(); |
| 377 | int countFalseNonZero = 0; |
| 378 | int countTrueNonZero = 0; |
| 379 | for (Index j=0; j<m2.outerSize(); ++j) |
| 380 | { |
| 381 | m2.startVec(j); |
| 382 | for (Index i=0; i<m2.innerSize(); ++i) |
| 383 | { |
| 384 | float x = internal::random<float>(0,1); |
| 385 | if (x<0.1) |
| 386 | { |
| 387 | // do nothing |
| 388 | } |
| 389 | else if (x<0.5) |
| 390 | { |
| 391 | countFalseNonZero++; |
| 392 | m2.insertBackByOuterInner(j,i) = Scalar(0); |
| 393 | } |
| 394 | else |
| 395 | { |
| 396 | countTrueNonZero++; |
| 397 | m2.insertBackByOuterInner(j,i) = Scalar(1); |
| 398 | if(SparseMatrixType::IsRowMajor) |
| 399 | refM2(j,i) = Scalar(1); |
| 400 | else |
| 401 | refM2(i,j) = Scalar(1); |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | m2.finalize(); |
| 406 | VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); |
| 407 | VERIFY_IS_APPROX(m2, refM2); |
| 408 | m2.prune(Scalar(1)); |
| 409 | VERIFY(countTrueNonZero==m2.nonZeros()); |
| 410 | VERIFY_IS_APPROX(m2, refM2); |
| 411 | } |
| 412 | |
| 413 | // test setFromTriplets |
| 414 | { |
| 415 | typedef Triplet<Scalar,Index> TripletType; |
| 416 | std::vector<TripletType> triplets; |
| 417 | int ntriplets = rows*cols; |
| 418 | triplets.reserve(ntriplets); |
| 419 | DenseMatrix refMat(rows,cols); |
| 420 | refMat.setZero(); |
| 421 | for(int i=0;i<ntriplets;++i) |
| 422 | { |
| 423 | Index r = internal::random<Index>(0,rows-1); |
| 424 | Index c = internal::random<Index>(0,cols-1); |
| 425 | Scalar v = internal::random<Scalar>(); |
| 426 | triplets.push_back(TripletType(r,c,v)); |
| 427 | refMat(r,c) += v; |
| 428 | } |
| 429 | SparseMatrixType m(rows,cols); |
| 430 | m.setFromTriplets(triplets.begin(), triplets.end()); |
| 431 | VERIFY_IS_APPROX(m, refMat); |
| 432 | } |
| 433 | |
| 434 | // test triangularView |
| 435 | { |
| 436 | DenseMatrix refMat2(rows, rows), refMat3(rows, rows); |
| 437 | SparseMatrixType m2(rows, rows), m3(rows, rows); |
| 438 | initSparse<Scalar>(density, refMat2, m2); |
| 439 | refMat3 = refMat2.template triangularView<Lower>(); |
| 440 | m3 = m2.template triangularView<Lower>(); |
| 441 | VERIFY_IS_APPROX(m3, refMat3); |
| 442 | |
| 443 | refMat3 = refMat2.template triangularView<Upper>(); |
| 444 | m3 = m2.template triangularView<Upper>(); |
| 445 | VERIFY_IS_APPROX(m3, refMat3); |
| 446 | |
| 447 | refMat3 = refMat2.template triangularView<UnitUpper>(); |
| 448 | m3 = m2.template triangularView<UnitUpper>(); |
| 449 | VERIFY_IS_APPROX(m3, refMat3); |
| 450 | |
| 451 | refMat3 = refMat2.template triangularView<UnitLower>(); |
| 452 | m3 = m2.template triangularView<UnitLower>(); |
| 453 | VERIFY_IS_APPROX(m3, refMat3); |
| 454 | |
| 455 | refMat3 = refMat2.template triangularView<StrictlyUpper>(); |
| 456 | m3 = m2.template triangularView<StrictlyUpper>(); |
| 457 | VERIFY_IS_APPROX(m3, refMat3); |
| 458 | |
| 459 | refMat3 = refMat2.template triangularView<StrictlyLower>(); |
| 460 | m3 = m2.template triangularView<StrictlyLower>(); |
| 461 | VERIFY_IS_APPROX(m3, refMat3); |
| 462 | } |
| 463 | |
| 464 | // test selfadjointView |
| 465 | if(!SparseMatrixType::IsRowMajor) |
| 466 | { |
| 467 | DenseMatrix refMat2(rows, rows), refMat3(rows, rows); |
| 468 | SparseMatrixType m2(rows, rows), m3(rows, rows); |
| 469 | initSparse<Scalar>(density, refMat2, m2); |
| 470 | refMat3 = refMat2.template selfadjointView<Lower>(); |
| 471 | m3 = m2.template selfadjointView<Lower>(); |
| 472 | VERIFY_IS_APPROX(m3, refMat3); |
| 473 | } |
| 474 | |
| 475 | // test sparseView |
| 476 | { |
| 477 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 478 | SparseMatrixType m2(rows, rows); |
| 479 | initSparse<Scalar>(density, refMat2, m2); |
| 480 | VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); |
| 481 | } |
| 482 | |
| 483 | // test diagonal |
| 484 | { |
| 485 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); |
| 486 | SparseMatrixType m2(rows, rows); |
| 487 | initSparse<Scalar>(density, refMat2, m2); |
| 488 | VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); |
| 489 | } |
| 490 | |
| 491 | // test conservative resize |
| 492 | { |
| 493 | std::vector< std::pair<Index,Index> > inc; |
| 494 | inc.push_back(std::pair<Index,Index>(-3,-2)); |
| 495 | inc.push_back(std::pair<Index,Index>(0,0)); |
| 496 | inc.push_back(std::pair<Index,Index>(3,2)); |
| 497 | inc.push_back(std::pair<Index,Index>(3,0)); |
| 498 | inc.push_back(std::pair<Index,Index>(0,3)); |
| 499 | |
| 500 | for(size_t i = 0; i< inc.size(); i++) { |
| 501 | Index incRows = inc[i].first; |
| 502 | Index incCols = inc[i].second; |
| 503 | SparseMatrixType m1(rows, cols); |
| 504 | DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); |
| 505 | initSparse<Scalar>(density, refMat1, m1); |
| 506 | |
| 507 | m1.conservativeResize(rows+incRows, cols+incCols); |
| 508 | refMat1.conservativeResize(rows+incRows, cols+incCols); |
| 509 | if (incRows > 0) refMat1.bottomRows(incRows).setZero(); |
| 510 | if (incCols > 0) refMat1.rightCols(incCols).setZero(); |
| 511 | |
| 512 | VERIFY_IS_APPROX(m1, refMat1); |
| 513 | |
| 514 | // Insert new values |
| 515 | if (incRows > 0) |
| 516 | m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; |
| 517 | if (incCols > 0) |
| 518 | m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; |
| 519 | |
| 520 | VERIFY_IS_APPROX(m1, refMat1); |
| 521 | |
| 522 | |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | // test Identity matrix |
| 527 | { |
| 528 | DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); |
| 529 | SparseMatrixType m1(rows, rows); |
| 530 | m1.setIdentity(); |
| 531 | VERIFY_IS_APPROX(m1, refMat1); |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | void test_sparse_basic() |
| 536 | { |
| 537 | for(int i = 0; i < g_repeat; i++) { |
| 538 | int s = Eigen::internal::random<int>(1,50); |
| 539 | EIGEN_UNUSED_VARIABLE(s); |
| 540 | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) )); |
| 541 | CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) )); |
| 542 | CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) )); |
| 543 | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) )); |
| 544 | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) )); |
| 545 | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) )); |
| 546 | |
| 547 | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(s), short(s))) )); |
| 548 | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(s), short(s))) )); |
| 549 | } |
| 550 | } |