Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. Eigen itself is part of the KDE project. |
| 3 | // |
| 4 | // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "sparse.h" |
| 11 | |
| 12 | template<typename Scalar> void |
| 13 | initSPD(double density, |
| 14 | Matrix<Scalar,Dynamic,Dynamic>& refMat, |
| 15 | SparseMatrix<Scalar>& sparseMat) |
| 16 | { |
| 17 | Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols()); |
| 18 | initSparse(density,refMat,sparseMat); |
| 19 | refMat = refMat * refMat.adjoint(); |
| 20 | for (int k=0; k<2; ++k) |
| 21 | { |
| 22 | initSparse(density,aux,sparseMat,ForceNonZeroDiag); |
| 23 | refMat += aux * aux.adjoint(); |
| 24 | } |
| 25 | sparseMat.startFill(); |
| 26 | for (int j=0 ; j<sparseMat.cols(); ++j) |
| 27 | for (int i=j ; i<sparseMat.rows(); ++i) |
| 28 | if (refMat(i,j)!=Scalar(0)) |
| 29 | sparseMat.fill(i,j) = refMat(i,j); |
| 30 | sparseMat.endFill(); |
| 31 | } |
| 32 | |
| 33 | template<typename Scalar> void sparse_solvers(int rows, int cols) |
| 34 | { |
| 35 | double density = std::max(8./(rows*cols), 0.01); |
| 36 | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| 37 | typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| 38 | // Scalar eps = 1e-6; |
| 39 | |
| 40 | DenseVector vec1 = DenseVector::Random(rows); |
| 41 | |
| 42 | std::vector<Vector2i> zeroCoords; |
| 43 | std::vector<Vector2i> nonzeroCoords; |
| 44 | |
| 45 | // test triangular solver |
| 46 | { |
| 47 | DenseVector vec2 = vec1, vec3 = vec1; |
| 48 | SparseMatrix<Scalar> m2(rows, cols); |
| 49 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| 50 | |
| 51 | // lower |
| 52 | initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); |
| 53 | VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().solveTriangular(vec2), |
| 54 | m2.template marked<LowerTriangular>().solveTriangular(vec3)); |
| 55 | |
| 56 | // lower - transpose |
| 57 | initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords); |
| 58 | VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().transpose().solveTriangular(vec2), |
| 59 | m2.template marked<LowerTriangular>().transpose().solveTriangular(vec3)); |
| 60 | |
| 61 | // upper |
| 62 | initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); |
| 63 | VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().solveTriangular(vec2), |
| 64 | m2.template marked<UpperTriangular>().solveTriangular(vec3)); |
| 65 | |
| 66 | // upper - transpose |
| 67 | initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords); |
| 68 | VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().transpose().solveTriangular(vec2), |
| 69 | m2.template marked<UpperTriangular>().transpose().solveTriangular(vec3)); |
| 70 | } |
| 71 | |
| 72 | // test LLT |
| 73 | { |
| 74 | // TODO fix the issue with complex (see SparseLLT::solveInPlace) |
| 75 | SparseMatrix<Scalar> m2(rows, cols); |
| 76 | DenseMatrix refMat2(rows, cols); |
| 77 | |
| 78 | DenseVector b = DenseVector::Random(cols); |
| 79 | DenseVector refX(cols), x(cols); |
| 80 | |
| 81 | initSPD(density, refMat2, m2); |
| 82 | |
| 83 | refMat2.llt().solve(b, &refX); |
| 84 | typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix; |
| 85 | if (!NumTraits<Scalar>::IsComplex) |
| 86 | { |
| 87 | x = b; |
| 88 | SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x); |
| 89 | VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default"); |
| 90 | } |
| 91 | #ifdef EIGEN_CHOLMOD_SUPPORT |
| 92 | x = b; |
| 93 | SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x); |
| 94 | VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod"); |
| 95 | #endif |
| 96 | if (!NumTraits<Scalar>::IsComplex) |
| 97 | { |
| 98 | #ifdef EIGEN_TAUCS_SUPPORT |
| 99 | x = b; |
| 100 | SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x); |
| 101 | VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)"); |
| 102 | x = b; |
| 103 | SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x); |
| 104 | VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)"); |
| 105 | x = b; |
| 106 | SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x); |
| 107 | VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)"); |
| 108 | #endif |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | // test LDLT |
| 113 | if (!NumTraits<Scalar>::IsComplex) |
| 114 | { |
| 115 | // TODO fix the issue with complex (see SparseLDLT::solveInPlace) |
| 116 | SparseMatrix<Scalar> m2(rows, cols); |
| 117 | DenseMatrix refMat2(rows, cols); |
| 118 | |
| 119 | DenseVector b = DenseVector::Random(cols); |
| 120 | DenseVector refX(cols), x(cols); |
| 121 | |
| 122 | //initSPD(density, refMat2, m2); |
| 123 | initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0); |
| 124 | refMat2 += refMat2.adjoint(); |
| 125 | refMat2.diagonal() *= 0.5; |
| 126 | |
| 127 | refMat2.ldlt().solve(b, &refX); |
| 128 | typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix; |
| 129 | x = b; |
| 130 | SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2); |
| 131 | if (ldlt.succeeded()) |
| 132 | ldlt.solveInPlace(x); |
| 133 | VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); |
| 134 | } |
| 135 | |
| 136 | // test LU |
| 137 | { |
| 138 | static int count = 0; |
| 139 | SparseMatrix<Scalar> m2(rows, cols); |
| 140 | DenseMatrix refMat2(rows, cols); |
| 141 | |
| 142 | DenseVector b = DenseVector::Random(cols); |
| 143 | DenseVector refX(cols), x(cols); |
| 144 | |
| 145 | initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords); |
| 146 | |
| 147 | LU<DenseMatrix> refLu(refMat2); |
| 148 | refLu.solve(b, &refX); |
| 149 | #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT) |
| 150 | Scalar refDet = refLu.determinant(); |
| 151 | #endif |
| 152 | x.setZero(); |
| 153 | // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x); |
| 154 | // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default"); |
| 155 | #ifdef EIGEN_SUPERLU_SUPPORT |
| 156 | { |
| 157 | x.setZero(); |
| 158 | SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2); |
| 159 | if (slu.succeeded()) |
| 160 | { |
| 161 | if (slu.solve(b,&x)) { |
| 162 | VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU"); |
| 163 | } |
| 164 | // std::cerr << refDet << " == " << slu.determinant() << "\n"; |
| 165 | if (count==0) { |
| 166 | VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex |
| 167 | } |
| 168 | } |
| 169 | } |
| 170 | #endif |
| 171 | #ifdef EIGEN_UMFPACK_SUPPORT |
| 172 | { |
| 173 | // check solve |
| 174 | x.setZero(); |
| 175 | SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2); |
| 176 | if (slu.succeeded()) { |
| 177 | if (slu.solve(b,&x)) { |
| 178 | if (count==0) { |
| 179 | VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex |
| 180 | } |
| 181 | } |
| 182 | VERIFY_IS_APPROX(refDet,slu.determinant()); |
| 183 | // TODO check the extracted data |
| 184 | //std::cerr << slu.matrixL() << "\n"; |
| 185 | } |
| 186 | } |
| 187 | #endif |
| 188 | count++; |
| 189 | } |
| 190 | |
| 191 | } |
| 192 | |
| 193 | void test_eigen2_sparse_solvers() |
| 194 | { |
| 195 | for(int i = 0; i < g_repeat; i++) { |
| 196 | CALL_SUBTEST_1( sparse_solvers<double>(8, 8) ); |
| 197 | CALL_SUBTEST_2( sparse_solvers<std::complex<double> >(16, 16) ); |
| 198 | CALL_SUBTEST_1( sparse_solvers<double>(101, 101) ); |
| 199 | } |
| 200 | } |