Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. Eigen itself is part of the KDE project. |
| 3 | // |
| 4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <Eigen/LeastSquares> |
| 12 | |
| 13 | template<typename VectorType, |
| 14 | typename HyperplaneType> |
| 15 | void makeNoisyCohyperplanarPoints(int numPoints, |
| 16 | VectorType **points, |
| 17 | HyperplaneType *hyperplane, |
| 18 | typename VectorType::Scalar noiseAmplitude) |
| 19 | { |
| 20 | typedef typename VectorType::Scalar Scalar; |
| 21 | const int size = points[0]->size(); |
| 22 | // pick a random hyperplane, store the coefficients of its equation |
| 23 | hyperplane->coeffs().resize(size + 1); |
| 24 | for(int j = 0; j < size + 1; j++) |
| 25 | { |
| 26 | do { |
| 27 | hyperplane->coeffs().coeffRef(j) = ei_random<Scalar>(); |
| 28 | } while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5); |
| 29 | } |
| 30 | |
| 31 | // now pick numPoints random points on this hyperplane |
| 32 | for(int i = 0; i < numPoints; i++) |
| 33 | { |
| 34 | VectorType& cur_point = *(points[i]); |
| 35 | do |
| 36 | { |
| 37 | cur_point = VectorType::Random(size)/*.normalized()*/; |
| 38 | // project cur_point onto the hyperplane |
| 39 | Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum(); |
| 40 | cur_point *= hyperplane->coeffs().coeff(size) / x; |
| 41 | } while( cur_point.norm() < 0.5 |
| 42 | || cur_point.norm() > 2.0 ); |
| 43 | } |
| 44 | |
| 45 | // add some noise to these points |
| 46 | for(int i = 0; i < numPoints; i++ ) |
| 47 | *(points[i]) += noiseAmplitude * VectorType::Random(size); |
| 48 | } |
| 49 | |
| 50 | template<typename VectorType> |
| 51 | void check_linearRegression(int numPoints, |
| 52 | VectorType **points, |
| 53 | const VectorType& original, |
| 54 | typename VectorType::Scalar tolerance) |
| 55 | { |
| 56 | int size = points[0]->size(); |
| 57 | assert(size==2); |
| 58 | VectorType result(size); |
| 59 | linearRegression(numPoints, points, &result, 1); |
| 60 | typename VectorType::Scalar error = (result - original).norm() / original.norm(); |
| 61 | VERIFY(ei_abs(error) < ei_abs(tolerance)); |
| 62 | } |
| 63 | |
| 64 | template<typename VectorType, |
| 65 | typename HyperplaneType> |
| 66 | void check_fitHyperplane(int numPoints, |
| 67 | VectorType **points, |
| 68 | const HyperplaneType& original, |
| 69 | typename VectorType::Scalar tolerance) |
| 70 | { |
| 71 | int size = points[0]->size(); |
| 72 | HyperplaneType result(size); |
| 73 | fitHyperplane(numPoints, points, &result); |
| 74 | result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size); |
| 75 | typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm(); |
| 76 | std::cout << ei_abs(error) << " xxx " << ei_abs(tolerance) << std::endl; |
| 77 | VERIFY(ei_abs(error) < ei_abs(tolerance)); |
| 78 | } |
| 79 | |
| 80 | void test_eigen2_regression() |
| 81 | { |
| 82 | for(int i = 0; i < g_repeat; i++) |
| 83 | { |
| 84 | #ifdef EIGEN_TEST_PART_1 |
| 85 | { |
| 86 | Vector2f points2f [1000]; |
| 87 | Vector2f *points2f_ptrs [1000]; |
| 88 | for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]); |
| 89 | Vector2f coeffs2f; |
| 90 | Hyperplane<float,2> coeffs3f; |
| 91 | makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f); |
| 92 | coeffs2f[0] = -coeffs3f.coeffs()[0]/coeffs3f.coeffs()[1]; |
| 93 | coeffs2f[1] = -coeffs3f.coeffs()[2]/coeffs3f.coeffs()[1]; |
| 94 | CALL_SUBTEST(check_linearRegression(10, points2f_ptrs, coeffs2f, 0.05f)); |
| 95 | CALL_SUBTEST(check_linearRegression(100, points2f_ptrs, coeffs2f, 0.01f)); |
| 96 | CALL_SUBTEST(check_linearRegression(1000, points2f_ptrs, coeffs2f, 0.002f)); |
| 97 | } |
| 98 | #endif |
| 99 | #ifdef EIGEN_TEST_PART_2 |
| 100 | { |
| 101 | Vector2f points2f [1000]; |
| 102 | Vector2f *points2f_ptrs [1000]; |
| 103 | for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]); |
| 104 | Hyperplane<float,2> coeffs3f; |
| 105 | makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f); |
| 106 | CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f)); |
| 107 | CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f)); |
| 108 | CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f)); |
| 109 | } |
| 110 | #endif |
| 111 | #ifdef EIGEN_TEST_PART_3 |
| 112 | { |
| 113 | Vector4d points4d [1000]; |
| 114 | Vector4d *points4d_ptrs [1000]; |
| 115 | for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]); |
| 116 | Hyperplane<double,4> coeffs5d; |
| 117 | makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01); |
| 118 | CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05)); |
| 119 | CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01)); |
| 120 | CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002)); |
| 121 | } |
| 122 | #endif |
| 123 | #ifdef EIGEN_TEST_PART_4 |
| 124 | { |
| 125 | VectorXcd *points11cd_ptrs[1000]; |
| 126 | for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11); |
| 127 | Hyperplane<std::complex<double>,Dynamic> *coeffs12cd = new Hyperplane<std::complex<double>,Dynamic>(11); |
| 128 | makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01); |
| 129 | CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025)); |
| 130 | CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006)); |
| 131 | delete coeffs12cd; |
| 132 | for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i]; |
| 133 | } |
| 134 | #endif |
| 135 | } |
| 136 | } |