Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. Eigen itself is part of the KDE project. |
| 3 | // |
| 4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <Eigen/LU> |
| 12 | |
| 13 | template<typename Derived> |
| 14 | void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m) |
| 15 | { |
| 16 | typedef typename Derived::RealScalar RealScalar; |
| 17 | for(int a = 0; a < 3*(m.rows()+m.cols()); a++) |
| 18 | { |
| 19 | RealScalar d = Eigen::ei_random<RealScalar>(-1,1); |
| 20 | int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number |
| 21 | int j; |
| 22 | do { |
| 23 | j = Eigen::ei_random<int>(0,m.rows()-1); |
| 24 | } while (i==j); // j is another one (must be different) |
| 25 | m.row(i) += d * m.row(j); |
| 26 | |
| 27 | i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number |
| 28 | do { |
| 29 | j = Eigen::ei_random<int>(0,m.cols()-1); |
| 30 | } while (i==j); // j is another one (must be different) |
| 31 | m.col(i) += d * m.col(j); |
| 32 | } |
| 33 | } |
| 34 | |
| 35 | template<typename MatrixType> void lu_non_invertible() |
| 36 | { |
| 37 | /* this test covers the following files: |
| 38 | LU.h |
| 39 | */ |
| 40 | // NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function |
| 41 | int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200); |
| 42 | int rank = ei_random<int>(1, std::min(rows, cols)-1); |
| 43 | |
| 44 | MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1); |
| 45 | m1 = MatrixType::Random(rows,cols); |
| 46 | if(rows <= cols) |
| 47 | for(int i = rank; i < rows; i++) m1.row(i).setZero(); |
| 48 | else |
| 49 | for(int i = rank; i < cols; i++) m1.col(i).setZero(); |
| 50 | doSomeRankPreservingOperations(m1); |
| 51 | |
| 52 | LU<MatrixType> lu(m1); |
| 53 | typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel(); |
| 54 | typename LU<MatrixType>::ImageResultType m1image = lu.image(); |
| 55 | |
| 56 | VERIFY(rank == lu.rank()); |
| 57 | VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); |
| 58 | VERIFY(!lu.isInjective()); |
| 59 | VERIFY(!lu.isInvertible()); |
| 60 | VERIFY(lu.isSurjective() == (lu.rank() == rows)); |
| 61 | VERIFY((m1 * m1kernel).isMuchSmallerThan(m1)); |
| 62 | VERIFY(m1image.lu().rank() == rank); |
| 63 | MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols()); |
| 64 | sidebyside << m1, m1image; |
| 65 | VERIFY(sidebyside.lu().rank() == rank); |
| 66 | m2 = MatrixType::Random(cols,cols2); |
| 67 | m3 = m1*m2; |
| 68 | m2 = MatrixType::Random(cols,cols2); |
| 69 | lu.solve(m3, &m2); |
| 70 | VERIFY_IS_APPROX(m3, m1*m2); |
| 71 | /* solve now always returns true |
| 72 | m3 = MatrixType::Random(rows,cols2); |
| 73 | VERIFY(!lu.solve(m3, &m2)); |
| 74 | */ |
| 75 | } |
| 76 | |
| 77 | template<typename MatrixType> void lu_invertible() |
| 78 | { |
| 79 | /* this test covers the following files: |
| 80 | LU.h |
| 81 | */ |
| 82 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 83 | int size = ei_random<int>(10,200); |
| 84 | |
| 85 | MatrixType m1(size, size), m2(size, size), m3(size, size); |
| 86 | m1 = MatrixType::Random(size,size); |
| 87 | |
| 88 | if (ei_is_same_type<RealScalar,float>::ret) |
| 89 | { |
| 90 | // let's build a matrix more stable to inverse |
| 91 | MatrixType a = MatrixType::Random(size,size*2); |
| 92 | m1 += a * a.adjoint(); |
| 93 | } |
| 94 | |
| 95 | LU<MatrixType> lu(m1); |
| 96 | VERIFY(0 == lu.dimensionOfKernel()); |
| 97 | VERIFY(size == lu.rank()); |
| 98 | VERIFY(lu.isInjective()); |
| 99 | VERIFY(lu.isSurjective()); |
| 100 | VERIFY(lu.isInvertible()); |
| 101 | VERIFY(lu.image().lu().isInvertible()); |
| 102 | m3 = MatrixType::Random(size,size); |
| 103 | lu.solve(m3, &m2); |
| 104 | VERIFY_IS_APPROX(m3, m1*m2); |
| 105 | VERIFY_IS_APPROX(m2, lu.inverse()*m3); |
| 106 | m3 = MatrixType::Random(size,size); |
| 107 | VERIFY(lu.solve(m3, &m2)); |
| 108 | } |
| 109 | |
| 110 | void test_eigen2_lu() |
| 111 | { |
| 112 | for(int i = 0; i < g_repeat; i++) { |
| 113 | CALL_SUBTEST_1( lu_non_invertible<MatrixXf>() ); |
| 114 | CALL_SUBTEST_2( lu_non_invertible<MatrixXd>() ); |
| 115 | CALL_SUBTEST_3( lu_non_invertible<MatrixXcf>() ); |
| 116 | CALL_SUBTEST_4( lu_non_invertible<MatrixXcd>() ); |
| 117 | CALL_SUBTEST_1( lu_invertible<MatrixXf>() ); |
| 118 | CALL_SUBTEST_2( lu_invertible<MatrixXd>() ); |
| 119 | CALL_SUBTEST_3( lu_invertible<MatrixXcf>() ); |
| 120 | CALL_SUBTEST_4( lu_invertible<MatrixXcd>() ); |
| 121 | } |
| 122 | } |