Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. Eigen itself is part of the KDE project. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #define EIGEN_NO_ASSERTION_CHECKING |
| 11 | #include "main.h" |
| 12 | #include <Eigen/Cholesky> |
| 13 | #include <Eigen/LU> |
| 14 | |
| 15 | #ifdef HAS_GSL |
| 16 | #include "gsl_helper.h" |
| 17 | #endif |
| 18 | |
| 19 | template<typename MatrixType> void cholesky(const MatrixType& m) |
| 20 | { |
| 21 | /* this test covers the following files: |
| 22 | LLT.h LDLT.h |
| 23 | */ |
| 24 | int rows = m.rows(); |
| 25 | int cols = m.cols(); |
| 26 | |
| 27 | typedef typename MatrixType::Scalar Scalar; |
| 28 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 29 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| 30 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 31 | |
| 32 | MatrixType a0 = MatrixType::Random(rows,cols); |
| 33 | VectorType vecB = VectorType::Random(rows), vecX(rows); |
| 34 | MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); |
| 35 | SquareMatrixType symm = a0 * a0.adjoint(); |
| 36 | // let's make sure the matrix is not singular or near singular |
| 37 | MatrixType a1 = MatrixType::Random(rows,cols); |
| 38 | symm += a1 * a1.adjoint(); |
| 39 | |
| 40 | #ifdef HAS_GSL |
| 41 | if (ei_is_same_type<RealScalar,double>::ret) |
| 42 | { |
| 43 | typedef GslTraits<Scalar> Gsl; |
| 44 | typename Gsl::Matrix gMatA=0, gSymm=0; |
| 45 | typename Gsl::Vector gVecB=0, gVecX=0; |
| 46 | convert<MatrixType>(symm, gSymm); |
| 47 | convert<MatrixType>(symm, gMatA); |
| 48 | convert<VectorType>(vecB, gVecB); |
| 49 | convert<VectorType>(vecB, gVecX); |
| 50 | Gsl::cholesky(gMatA); |
| 51 | Gsl::cholesky_solve(gMatA, gVecB, gVecX); |
| 52 | VectorType vecX(rows), _vecX, _vecB; |
| 53 | convert(gVecX, _vecX); |
| 54 | symm.llt().solve(vecB, &vecX); |
| 55 | Gsl::prod(gSymm, gVecX, gVecB); |
| 56 | convert(gVecB, _vecB); |
| 57 | // test gsl itself ! |
| 58 | VERIFY_IS_APPROX(vecB, _vecB); |
| 59 | VERIFY_IS_APPROX(vecX, _vecX); |
| 60 | |
| 61 | Gsl::free(gMatA); |
| 62 | Gsl::free(gSymm); |
| 63 | Gsl::free(gVecB); |
| 64 | Gsl::free(gVecX); |
| 65 | } |
| 66 | #endif |
| 67 | |
| 68 | { |
| 69 | LDLT<SquareMatrixType> ldlt(symm); |
| 70 | VERIFY(ldlt.isPositiveDefinite()); |
| 71 | // in eigen3, LDLT is pivoting |
| 72 | //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint()); |
| 73 | ldlt.solve(vecB, &vecX); |
| 74 | VERIFY_IS_APPROX(symm * vecX, vecB); |
| 75 | ldlt.solve(matB, &matX); |
| 76 | VERIFY_IS_APPROX(symm * matX, matB); |
| 77 | } |
| 78 | |
| 79 | { |
| 80 | LLT<SquareMatrixType> chol(symm); |
| 81 | VERIFY(chol.isPositiveDefinite()); |
| 82 | VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint()); |
| 83 | chol.solve(vecB, &vecX); |
| 84 | VERIFY_IS_APPROX(symm * vecX, vecB); |
| 85 | chol.solve(matB, &matX); |
| 86 | VERIFY_IS_APPROX(symm * matX, matB); |
| 87 | } |
| 88 | |
| 89 | #if 0 // cholesky is not rank-revealing anyway |
| 90 | // test isPositiveDefinite on non definite matrix |
| 91 | if (rows>4) |
| 92 | { |
| 93 | SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint(); |
| 94 | LLT<SquareMatrixType> chol(symm); |
| 95 | VERIFY(!chol.isPositiveDefinite()); |
| 96 | LDLT<SquareMatrixType> cholnosqrt(symm); |
| 97 | VERIFY(!cholnosqrt.isPositiveDefinite()); |
| 98 | } |
| 99 | #endif |
| 100 | } |
| 101 | |
| 102 | void test_eigen2_cholesky() |
| 103 | { |
| 104 | for(int i = 0; i < g_repeat; i++) { |
| 105 | CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) ); |
| 106 | CALL_SUBTEST_2( cholesky(Matrix2d()) ); |
| 107 | CALL_SUBTEST_3( cholesky(Matrix3f()) ); |
| 108 | CALL_SUBTEST_4( cholesky(Matrix4d()) ); |
| 109 | CALL_SUBTEST_5( cholesky(MatrixXcd(7,7)) ); |
| 110 | CALL_SUBTEST_6( cholesky(MatrixXf(17,17)) ); |
| 111 | CALL_SUBTEST_7( cholesky(MatrixXd(33,33)) ); |
| 112 | } |
| 113 | } |