Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. Eigen itself is part of the KDE project. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <Eigen/Array> |
| 12 | |
| 13 | template<typename MatrixType> void array(const MatrixType& m) |
| 14 | { |
| 15 | /* this test covers the following files: |
| 16 | Array.cpp |
| 17 | */ |
| 18 | |
| 19 | typedef typename MatrixType::Scalar Scalar; |
| 20 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 21 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 22 | |
| 23 | int rows = m.rows(); |
| 24 | int cols = m.cols(); |
| 25 | |
| 26 | MatrixType m1 = MatrixType::Random(rows, cols), |
| 27 | m2 = MatrixType::Random(rows, cols), |
| 28 | m3(rows, cols); |
| 29 | |
| 30 | Scalar s1 = ei_random<Scalar>(), |
| 31 | s2 = ei_random<Scalar>(); |
| 32 | |
| 33 | // scalar addition |
| 34 | VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise()); |
| 35 | VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1); |
| 36 | VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) ); |
| 37 | m3 = m1; |
| 38 | m3.cwise() += s2; |
| 39 | VERIFY_IS_APPROX(m3, m1.cwise() + s2); |
| 40 | m3 = m1; |
| 41 | m3.cwise() -= s1; |
| 42 | VERIFY_IS_APPROX(m3, m1.cwise() - s1); |
| 43 | |
| 44 | // reductions |
| 45 | VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum()); |
| 46 | VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum()); |
| 47 | if (!ei_isApprox(m1.sum(), (m1+m2).sum())) |
| 48 | VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); |
| 49 | VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>())); |
| 50 | } |
| 51 | |
| 52 | template<typename MatrixType> void comparisons(const MatrixType& m) |
| 53 | { |
| 54 | typedef typename MatrixType::Scalar Scalar; |
| 55 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 56 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 57 | |
| 58 | int rows = m.rows(); |
| 59 | int cols = m.cols(); |
| 60 | |
| 61 | int r = ei_random<int>(0, rows-1), |
| 62 | c = ei_random<int>(0, cols-1); |
| 63 | |
| 64 | MatrixType m1 = MatrixType::Random(rows, cols), |
| 65 | m2 = MatrixType::Random(rows, cols), |
| 66 | m3(rows, cols); |
| 67 | |
| 68 | VERIFY(((m1.cwise() + Scalar(1)).cwise() > m1).all()); |
| 69 | VERIFY(((m1.cwise() - Scalar(1)).cwise() < m1).all()); |
| 70 | if (rows*cols>1) |
| 71 | { |
| 72 | m3 = m1; |
| 73 | m3(r,c) += 1; |
| 74 | VERIFY(! (m1.cwise() < m3).all() ); |
| 75 | VERIFY(! (m1.cwise() > m3).all() ); |
| 76 | } |
| 77 | |
| 78 | // comparisons to scalar |
| 79 | VERIFY( (m1.cwise() != (m1(r,c)+1) ).any() ); |
| 80 | VERIFY( (m1.cwise() > (m1(r,c)-1) ).any() ); |
| 81 | VERIFY( (m1.cwise() < (m1(r,c)+1) ).any() ); |
| 82 | VERIFY( (m1.cwise() == m1(r,c) ).any() ); |
| 83 | |
| 84 | // test Select |
| 85 | VERIFY_IS_APPROX( (m1.cwise()<m2).select(m1,m2), m1.cwise().min(m2) ); |
| 86 | VERIFY_IS_APPROX( (m1.cwise()>m2).select(m1,m2), m1.cwise().max(m2) ); |
| 87 | Scalar mid = (m1.cwise().abs().minCoeff() + m1.cwise().abs().maxCoeff())/Scalar(2); |
| 88 | for (int j=0; j<cols; ++j) |
| 89 | for (int i=0; i<rows; ++i) |
| 90 | m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j); |
| 91 | VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid)) |
| 92 | .select(MatrixType::Zero(rows,cols),m1), m3); |
| 93 | // shorter versions: |
| 94 | VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid)) |
| 95 | .select(0,m1), m3); |
| 96 | VERIFY_IS_APPROX( (m1.cwise().abs().cwise()>=MatrixType::Constant(rows,cols,mid)) |
| 97 | .select(m1,0), m3); |
| 98 | // even shorter version: |
| 99 | VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<mid).select(0,m1), m3); |
| 100 | |
| 101 | // count |
| 102 | VERIFY(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).count() == rows*cols); |
| 103 | VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).colwise().count().template cast<int>(), RowVectorXi::Constant(cols,rows)); |
| 104 | VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).rowwise().count().template cast<int>(), VectorXi::Constant(rows, cols)); |
| 105 | } |
| 106 | |
| 107 | template<typename VectorType> void lpNorm(const VectorType& v) |
| 108 | { |
| 109 | VectorType u = VectorType::Random(v.size()); |
| 110 | |
| 111 | VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwise().abs().maxCoeff()); |
| 112 | VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwise().abs().sum()); |
| 113 | VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.cwise().abs().cwise().square().sum())); |
| 114 | VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.cwise().abs().cwise().pow(5).sum()); |
| 115 | } |
| 116 | |
| 117 | void test_eigen2_array() |
| 118 | { |
| 119 | for(int i = 0; i < g_repeat; i++) { |
| 120 | CALL_SUBTEST_1( array(Matrix<float, 1, 1>()) ); |
| 121 | CALL_SUBTEST_2( array(Matrix2f()) ); |
| 122 | CALL_SUBTEST_3( array(Matrix4d()) ); |
| 123 | CALL_SUBTEST_4( array(MatrixXcf(3, 3)) ); |
| 124 | CALL_SUBTEST_5( array(MatrixXf(8, 12)) ); |
| 125 | CALL_SUBTEST_6( array(MatrixXi(8, 12)) ); |
| 126 | } |
| 127 | for(int i = 0; i < g_repeat; i++) { |
| 128 | CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) ); |
| 129 | CALL_SUBTEST_2( comparisons(Matrix2f()) ); |
| 130 | CALL_SUBTEST_3( comparisons(Matrix4d()) ); |
| 131 | CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) ); |
| 132 | CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) ); |
| 133 | } |
| 134 | for(int i = 0; i < g_repeat; i++) { |
| 135 | CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) ); |
| 136 | CALL_SUBTEST_2( lpNorm(Vector2f()) ); |
| 137 | CALL_SUBTEST_3( lpNorm(Vector3d()) ); |
| 138 | CALL_SUBTEST_4( lpNorm(Vector4f()) ); |
| 139 | CALL_SUBTEST_5( lpNorm(VectorXf(16)) ); |
| 140 | CALL_SUBTEST_7( lpNorm(VectorXcd(10)) ); |
| 141 | } |
| 142 | } |