Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. Eigen itself is part of the KDE project. |
| 3 | // |
| 4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | |
| 12 | template<typename MatrixType> void adjoint(const MatrixType& m) |
| 13 | { |
| 14 | /* this test covers the following files: |
| 15 | Transpose.h Conjugate.h Dot.h |
| 16 | */ |
| 17 | |
| 18 | typedef typename MatrixType::Scalar Scalar; |
| 19 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 20 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 21 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| 22 | int rows = m.rows(); |
| 23 | int cols = m.cols(); |
| 24 | |
| 25 | RealScalar largerEps = test_precision<RealScalar>(); |
| 26 | if (ei_is_same_type<RealScalar,float>::ret) |
| 27 | largerEps = RealScalar(1e-3f); |
| 28 | |
| 29 | MatrixType m1 = MatrixType::Random(rows, cols), |
| 30 | m2 = MatrixType::Random(rows, cols), |
| 31 | m3(rows, cols), |
| 32 | square = SquareMatrixType::Random(rows, rows); |
| 33 | VectorType v1 = VectorType::Random(rows), |
| 34 | v2 = VectorType::Random(rows), |
| 35 | v3 = VectorType::Random(rows), |
| 36 | vzero = VectorType::Zero(rows); |
| 37 | |
| 38 | Scalar s1 = ei_random<Scalar>(), |
| 39 | s2 = ei_random<Scalar>(); |
| 40 | |
| 41 | // check basic compatibility of adjoint, transpose, conjugate |
| 42 | VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); |
| 43 | VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); |
| 44 | |
| 45 | // check multiplicative behavior |
| 46 | VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); |
| 47 | VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); |
| 48 | |
| 49 | // check basic properties of dot, norm, norm2 |
| 50 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 51 | VERIFY(ei_isApprox((s1 * v1 + s2 * v2).eigen2_dot(v3), s1 * v1.eigen2_dot(v3) + s2 * v2.eigen2_dot(v3), largerEps)); |
| 52 | VERIFY(ei_isApprox(v3.eigen2_dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.eigen2_dot(v1)+ei_conj(s2)*v3.eigen2_dot(v2), largerEps)); |
| 53 | VERIFY_IS_APPROX(ei_conj(v1.eigen2_dot(v2)), v2.eigen2_dot(v1)); |
| 54 | VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)), v1.squaredNorm()); |
| 55 | if(NumTraits<Scalar>::HasFloatingPoint) |
| 56 | VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); |
| 57 | VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.eigen2_dot(v1)), static_cast<RealScalar>(1)); |
| 58 | if(NumTraits<Scalar>::HasFloatingPoint) |
| 59 | VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); |
| 60 | |
| 61 | // check compatibility of dot and adjoint |
| 62 | VERIFY(ei_isApprox(v1.eigen2_dot(square * v2), (square.adjoint() * v1).eigen2_dot(v2), largerEps)); |
| 63 | |
| 64 | // like in testBasicStuff, test operator() to check const-qualification |
| 65 | int r = ei_random<int>(0, rows-1), |
| 66 | c = ei_random<int>(0, cols-1); |
| 67 | VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); |
| 68 | VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c))); |
| 69 | |
| 70 | if(NumTraits<Scalar>::HasFloatingPoint) |
| 71 | { |
| 72 | // check that Random().normalized() works: tricky as the random xpr must be evaluated by |
| 73 | // normalized() in order to produce a consistent result. |
| 74 | VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); |
| 75 | } |
| 76 | |
| 77 | // check inplace transpose |
| 78 | m3 = m1; |
| 79 | m3.transposeInPlace(); |
| 80 | VERIFY_IS_APPROX(m3,m1.transpose()); |
| 81 | m3.transposeInPlace(); |
| 82 | VERIFY_IS_APPROX(m3,m1); |
| 83 | |
| 84 | } |
| 85 | |
| 86 | void test_eigen2_adjoint() |
| 87 | { |
| 88 | for(int i = 0; i < g_repeat; i++) { |
| 89 | CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); |
| 90 | CALL_SUBTEST_2( adjoint(Matrix3d()) ); |
| 91 | CALL_SUBTEST_3( adjoint(Matrix4f()) ); |
| 92 | CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) ); |
| 93 | CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) ); |
| 94 | CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) ); |
| 95 | } |
| 96 | // test a large matrix only once |
| 97 | CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); |
| 98 | } |
| 99 | |