Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #define EIGEN2_SUPPORT |
| 12 | #define EIGEN_NO_EIGEN2_DEPRECATED_WARNING |
| 13 | |
| 14 | #define EIGEN_NO_STATIC_ASSERT |
| 15 | #include "main.h" |
| 16 | #include <functional> |
| 17 | |
| 18 | #ifdef min |
| 19 | #undef min |
| 20 | #endif |
| 21 | |
| 22 | #ifdef max |
| 23 | #undef max |
| 24 | #endif |
| 25 | |
| 26 | using namespace std; |
| 27 | |
| 28 | template<typename Scalar> struct AddIfNull { |
| 29 | const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;} |
| 30 | enum { Cost = NumTraits<Scalar>::AddCost }; |
| 31 | }; |
| 32 | |
| 33 | template<typename MatrixType> |
| 34 | typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsInteger,typename MatrixType::Scalar>::type |
| 35 | cwiseops_real_only(MatrixType& m1, MatrixType& m2, MatrixType& m3, MatrixType& mones) |
| 36 | { |
| 37 | typedef typename MatrixType::Scalar Scalar; |
| 38 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 39 | |
| 40 | VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse())); |
| 41 | m3 = m1.cwise().abs().cwise().sqrt(); |
| 42 | VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs()); |
| 43 | VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs()); |
| 44 | VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs()); |
| 45 | |
| 46 | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); |
| 47 | m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1); |
| 48 | VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse()); |
| 49 | m3 = m1.cwise().abs(); |
| 50 | VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt()); |
| 51 | |
| 52 | // VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos()); |
| 53 | VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square()); |
| 54 | m3 = m1; |
| 55 | m3.cwise() /= m2; |
| 56 | VERIFY_IS_APPROX(m3, m1.cwise() / m2); |
| 57 | |
| 58 | return Scalar(0); |
| 59 | } |
| 60 | |
| 61 | template<typename MatrixType> |
| 62 | typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsInteger,typename MatrixType::Scalar>::type |
| 63 | cwiseops_real_only(MatrixType& , MatrixType& , MatrixType& , MatrixType& ) |
| 64 | { |
| 65 | return 0; |
| 66 | } |
| 67 | |
| 68 | template<typename MatrixType> void cwiseops(const MatrixType& m) |
| 69 | { |
| 70 | typedef typename MatrixType::Index Index; |
| 71 | typedef typename MatrixType::Scalar Scalar; |
| 72 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 73 | |
| 74 | Index rows = m.rows(); |
| 75 | Index cols = m.cols(); |
| 76 | |
| 77 | MatrixType m1 = MatrixType::Random(rows, cols), |
| 78 | m1bis = m1, |
| 79 | m2 = MatrixType::Random(rows, cols), |
| 80 | m3(rows, cols), |
| 81 | m4(rows, cols), |
| 82 | mzero = MatrixType::Zero(rows, cols), |
| 83 | mones = MatrixType::Ones(rows, cols), |
| 84 | identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> |
| 85 | ::Identity(rows, rows); |
| 86 | VectorType vzero = VectorType::Zero(rows), |
| 87 | vones = VectorType::Ones(rows), |
| 88 | v3(rows); |
| 89 | |
| 90 | Index r = internal::random<Index>(0, rows-1), |
| 91 | c = internal::random<Index>(0, cols-1); |
| 92 | |
| 93 | Scalar s1 = internal::random<Scalar>(); |
| 94 | |
| 95 | // test Zero, Ones, Constant, and the set* variants |
| 96 | m3 = MatrixType::Constant(rows, cols, s1); |
| 97 | for (int j=0; j<cols; ++j) |
| 98 | for (int i=0; i<rows; ++i) |
| 99 | { |
| 100 | VERIFY_IS_APPROX(mzero(i,j), Scalar(0)); |
| 101 | VERIFY_IS_APPROX(mones(i,j), Scalar(1)); |
| 102 | VERIFY_IS_APPROX(m3(i,j), s1); |
| 103 | } |
| 104 | VERIFY(mzero.isZero()); |
| 105 | VERIFY(mones.isOnes()); |
| 106 | VERIFY(m3.isConstant(s1)); |
| 107 | VERIFY(identity.isIdentity()); |
| 108 | VERIFY_IS_APPROX(m4.setConstant(s1), m3); |
| 109 | VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3); |
| 110 | VERIFY_IS_APPROX(m4.setZero(), mzero); |
| 111 | VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero); |
| 112 | VERIFY_IS_APPROX(m4.setOnes(), mones); |
| 113 | VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones); |
| 114 | m4.fill(s1); |
| 115 | VERIFY_IS_APPROX(m4, m3); |
| 116 | |
| 117 | VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1)); |
| 118 | VERIFY_IS_APPROX(v3.setZero(rows), vzero); |
| 119 | VERIFY_IS_APPROX(v3.setOnes(rows), vones); |
| 120 | |
| 121 | m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones); |
| 122 | |
| 123 | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2()); |
| 124 | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square()); |
| 125 | VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube()); |
| 126 | |
| 127 | VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1)); |
| 128 | VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1)); |
| 129 | m3 = m1; m3.cwise() += 1; |
| 130 | VERIFY_IS_APPROX(m1 + mones, m3); |
| 131 | m3 = m1; m3.cwise() -= 1; |
| 132 | VERIFY_IS_APPROX(m1 - mones, m3); |
| 133 | |
| 134 | VERIFY_IS_APPROX(m2, m2.cwise() * mones); |
| 135 | VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1); |
| 136 | m3 = m1; |
| 137 | m3.cwise() *= m2; |
| 138 | VERIFY_IS_APPROX(m3, m1.cwise() * m2); |
| 139 | |
| 140 | VERIFY_IS_APPROX(mones, m2.cwise()/m2); |
| 141 | |
| 142 | // check min |
| 143 | VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) ); |
| 144 | VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 ); |
| 145 | VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones ); |
| 146 | |
| 147 | // check max |
| 148 | VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) ); |
| 149 | VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 ); |
| 150 | VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones ); |
| 151 | |
| 152 | VERIFY( (m1.cwise() == m1).all() ); |
| 153 | VERIFY( (m1.cwise() != m2).any() ); |
| 154 | VERIFY(!(m1.cwise() == (m1+mones)).any() ); |
| 155 | if (rows*cols>1) |
| 156 | { |
| 157 | m3 = m1; |
| 158 | m3(r,c) += 1; |
| 159 | VERIFY( (m1.cwise() == m3).any() ); |
| 160 | VERIFY( !(m1.cwise() == m3).all() ); |
| 161 | } |
| 162 | VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() ); |
| 163 | VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() ); |
| 164 | VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() ); |
| 165 | VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() ); |
| 166 | |
| 167 | VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() ); |
| 168 | VERIFY( !(m1.cwise()<m1bis.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() ); |
| 169 | VERIFY( !(m1.cwise()>m1bis.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() ); |
| 170 | |
| 171 | cwiseops_real_only(m1, m2, m3, mones); |
| 172 | } |
| 173 | |
| 174 | void test_cwiseop() |
| 175 | { |
| 176 | for(int i = 0; i < g_repeat ; i++) { |
| 177 | CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) ); |
| 178 | CALL_SUBTEST_2( cwiseops(Matrix4d()) ); |
| 179 | CALL_SUBTEST_3( cwiseops(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 180 | CALL_SUBTEST_4( cwiseops(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 181 | CALL_SUBTEST_5( cwiseops(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 182 | CALL_SUBTEST_6( cwiseops(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 183 | } |
| 184 | } |