Austin Schuh | 40c1652 | 2018-10-28 20:27:54 -0700 | [diff] [blame^] | 1 | #!/usr/bin/env python2.7 |
| 2 | |
| 3 | import argparse |
| 4 | import json |
| 5 | import uuid |
| 6 | import httplib2 |
| 7 | |
| 8 | from apiclient import discovery |
| 9 | from apiclient.errors import HttpError |
| 10 | from oauth2client.client import GoogleCredentials |
| 11 | |
| 12 | # 30 days in milliseconds |
| 13 | _EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000 |
| 14 | NUM_RETRIES = 3 |
| 15 | |
| 16 | |
| 17 | def create_big_query(): |
| 18 | """Authenticates with cloud platform and gets a BiqQuery service object |
| 19 | """ |
| 20 | creds = GoogleCredentials.get_application_default() |
| 21 | return discovery.build( |
| 22 | 'bigquery', 'v2', credentials=creds, cache_discovery=False) |
| 23 | |
| 24 | |
| 25 | def create_dataset(biq_query, project_id, dataset_id): |
| 26 | is_success = True |
| 27 | body = { |
| 28 | 'datasetReference': { |
| 29 | 'projectId': project_id, |
| 30 | 'datasetId': dataset_id |
| 31 | } |
| 32 | } |
| 33 | |
| 34 | try: |
| 35 | dataset_req = biq_query.datasets().insert( |
| 36 | projectId=project_id, body=body) |
| 37 | dataset_req.execute(num_retries=NUM_RETRIES) |
| 38 | except HttpError as http_error: |
| 39 | if http_error.resp.status == 409: |
| 40 | print 'Warning: The dataset %s already exists' % dataset_id |
| 41 | else: |
| 42 | # Note: For more debugging info, print "http_error.content" |
| 43 | print 'Error in creating dataset: %s. Err: %s' % (dataset_id, |
| 44 | http_error) |
| 45 | is_success = False |
| 46 | return is_success |
| 47 | |
| 48 | |
| 49 | def create_table(big_query, project_id, dataset_id, table_id, table_schema, |
| 50 | description): |
| 51 | fields = [{ |
| 52 | 'name': field_name, |
| 53 | 'type': field_type, |
| 54 | 'description': field_description |
| 55 | } for (field_name, field_type, field_description) in table_schema] |
| 56 | return create_table2(big_query, project_id, dataset_id, table_id, fields, |
| 57 | description) |
| 58 | |
| 59 | |
| 60 | def create_partitioned_table(big_query, |
| 61 | project_id, |
| 62 | dataset_id, |
| 63 | table_id, |
| 64 | table_schema, |
| 65 | description, |
| 66 | partition_type='DAY', |
| 67 | expiration_ms=_EXPIRATION_MS): |
| 68 | """Creates a partitioned table. By default, a date-paritioned table is created with |
| 69 | each partition lasting 30 days after it was last modified. |
| 70 | """ |
| 71 | fields = [{ |
| 72 | 'name': field_name, |
| 73 | 'type': field_type, |
| 74 | 'description': field_description |
| 75 | } for (field_name, field_type, field_description) in table_schema] |
| 76 | return create_table2(big_query, project_id, dataset_id, table_id, fields, |
| 77 | description, partition_type, expiration_ms) |
| 78 | |
| 79 | |
| 80 | def create_table2(big_query, |
| 81 | project_id, |
| 82 | dataset_id, |
| 83 | table_id, |
| 84 | fields_schema, |
| 85 | description, |
| 86 | partition_type=None, |
| 87 | expiration_ms=None): |
| 88 | is_success = True |
| 89 | |
| 90 | body = { |
| 91 | 'description': description, |
| 92 | 'schema': { |
| 93 | 'fields': fields_schema |
| 94 | }, |
| 95 | 'tableReference': { |
| 96 | 'datasetId': dataset_id, |
| 97 | 'projectId': project_id, |
| 98 | 'tableId': table_id |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | if partition_type and expiration_ms: |
| 103 | body["timePartitioning"] = { |
| 104 | "type": partition_type, |
| 105 | "expirationMs": expiration_ms |
| 106 | } |
| 107 | |
| 108 | try: |
| 109 | table_req = big_query.tables().insert( |
| 110 | projectId=project_id, datasetId=dataset_id, body=body) |
| 111 | res = table_req.execute(num_retries=NUM_RETRIES) |
| 112 | print 'Successfully created %s "%s"' % (res['kind'], res['id']) |
| 113 | except HttpError as http_error: |
| 114 | if http_error.resp.status == 409: |
| 115 | print 'Warning: Table %s already exists' % table_id |
| 116 | else: |
| 117 | print 'Error in creating table: %s. Err: %s' % (table_id, |
| 118 | http_error) |
| 119 | is_success = False |
| 120 | return is_success |
| 121 | |
| 122 | |
| 123 | def patch_table(big_query, project_id, dataset_id, table_id, fields_schema): |
| 124 | is_success = True |
| 125 | |
| 126 | body = { |
| 127 | 'schema': { |
| 128 | 'fields': fields_schema |
| 129 | }, |
| 130 | 'tableReference': { |
| 131 | 'datasetId': dataset_id, |
| 132 | 'projectId': project_id, |
| 133 | 'tableId': table_id |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | try: |
| 138 | table_req = big_query.tables().patch( |
| 139 | projectId=project_id, |
| 140 | datasetId=dataset_id, |
| 141 | tableId=table_id, |
| 142 | body=body) |
| 143 | res = table_req.execute(num_retries=NUM_RETRIES) |
| 144 | print 'Successfully patched %s "%s"' % (res['kind'], res['id']) |
| 145 | except HttpError as http_error: |
| 146 | print 'Error in creating table: %s. Err: %s' % (table_id, http_error) |
| 147 | is_success = False |
| 148 | return is_success |
| 149 | |
| 150 | |
| 151 | def insert_rows(big_query, project_id, dataset_id, table_id, rows_list): |
| 152 | is_success = True |
| 153 | body = {'rows': rows_list} |
| 154 | try: |
| 155 | insert_req = big_query.tabledata().insertAll( |
| 156 | projectId=project_id, |
| 157 | datasetId=dataset_id, |
| 158 | tableId=table_id, |
| 159 | body=body) |
| 160 | res = insert_req.execute(num_retries=NUM_RETRIES) |
| 161 | if res.get('insertErrors', None): |
| 162 | print 'Error inserting rows! Response: %s' % res |
| 163 | is_success = False |
| 164 | except HttpError as http_error: |
| 165 | print 'Error inserting rows to the table %s' % table_id |
| 166 | is_success = False |
| 167 | |
| 168 | return is_success |
| 169 | |
| 170 | |
| 171 | def sync_query_job(big_query, project_id, query, timeout=5000): |
| 172 | query_data = {'query': query, 'timeoutMs': timeout} |
| 173 | query_job = None |
| 174 | try: |
| 175 | query_job = big_query.jobs().query( |
| 176 | projectId=project_id, |
| 177 | body=query_data).execute(num_retries=NUM_RETRIES) |
| 178 | except HttpError as http_error: |
| 179 | print 'Query execute job failed with error: %s' % http_error |
| 180 | print http_error.content |
| 181 | return query_job |
| 182 | |
| 183 | |
| 184 | # List of (column name, column type, description) tuples |
| 185 | def make_row(unique_row_id, row_values_dict): |
| 186 | """row_values_dict is a dictionary of column name and column value. |
| 187 | """ |
| 188 | return {'insertId': unique_row_id, 'json': row_values_dict} |