Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | // GraphCycles provides incremental cycle detection on a dynamic |
| 16 | // graph using the following algorithm: |
| 17 | // |
| 18 | // A dynamic topological sort algorithm for directed acyclic graphs |
| 19 | // David J. Pearce, Paul H. J. Kelly |
| 20 | // Journal of Experimental Algorithmics (JEA) JEA Homepage archive |
| 21 | // Volume 11, 2006, Article No. 1.7 |
| 22 | // |
| 23 | // Brief summary of the algorithm: |
| 24 | // |
| 25 | // (1) Maintain a rank for each node that is consistent |
| 26 | // with the topological sort of the graph. I.e., path from x to y |
| 27 | // implies rank[x] < rank[y]. |
| 28 | // (2) When a new edge (x->y) is inserted, do nothing if rank[x] < rank[y]. |
| 29 | // (3) Otherwise: adjust ranks in the neighborhood of x and y. |
| 30 | |
| 31 | #include "absl/base/attributes.h" |
| 32 | // This file is a no-op if the required LowLevelAlloc support is missing. |
| 33 | #include "absl/base/internal/low_level_alloc.h" |
| 34 | #ifndef ABSL_LOW_LEVEL_ALLOC_MISSING |
| 35 | |
| 36 | #include "absl/synchronization/internal/graphcycles.h" |
| 37 | |
| 38 | #include <algorithm> |
| 39 | #include <array> |
| 40 | #include "absl/base/internal/hide_ptr.h" |
| 41 | #include "absl/base/internal/raw_logging.h" |
| 42 | #include "absl/base/internal/spinlock.h" |
| 43 | |
| 44 | // Do not use STL. This module does not use standard memory allocation. |
| 45 | |
| 46 | namespace absl { |
| 47 | namespace synchronization_internal { |
| 48 | |
| 49 | namespace { |
| 50 | |
| 51 | // Avoid LowLevelAlloc's default arena since it calls malloc hooks in |
| 52 | // which people are doing things like acquiring Mutexes. |
| 53 | static absl::base_internal::SpinLock arena_mu( |
| 54 | absl::base_internal::kLinkerInitialized); |
| 55 | static base_internal::LowLevelAlloc::Arena* arena; |
| 56 | |
| 57 | static void InitArenaIfNecessary() { |
| 58 | arena_mu.Lock(); |
| 59 | if (arena == nullptr) { |
| 60 | arena = base_internal::LowLevelAlloc::NewArena(0); |
| 61 | } |
| 62 | arena_mu.Unlock(); |
| 63 | } |
| 64 | |
| 65 | // Number of inlined elements in Vec. Hash table implementation |
| 66 | // relies on this being a power of two. |
| 67 | static const uint32_t kInline = 8; |
| 68 | |
| 69 | // A simple LowLevelAlloc based resizable vector with inlined storage |
| 70 | // for a few elements. T must be a plain type since constructor |
| 71 | // and destructor are not run on elements of type T managed by Vec. |
| 72 | template <typename T> |
| 73 | class Vec { |
| 74 | public: |
| 75 | Vec() { Init(); } |
| 76 | ~Vec() { Discard(); } |
| 77 | |
| 78 | void clear() { |
| 79 | Discard(); |
| 80 | Init(); |
| 81 | } |
| 82 | |
| 83 | bool empty() const { return size_ == 0; } |
| 84 | uint32_t size() const { return size_; } |
| 85 | T* begin() { return ptr_; } |
| 86 | T* end() { return ptr_ + size_; } |
| 87 | const T& operator[](uint32_t i) const { return ptr_[i]; } |
| 88 | T& operator[](uint32_t i) { return ptr_[i]; } |
| 89 | const T& back() const { return ptr_[size_-1]; } |
| 90 | void pop_back() { size_--; } |
| 91 | |
| 92 | void push_back(const T& v) { |
| 93 | if (size_ == capacity_) Grow(size_ + 1); |
| 94 | ptr_[size_] = v; |
| 95 | size_++; |
| 96 | } |
| 97 | |
| 98 | void resize(uint32_t n) { |
| 99 | if (n > capacity_) Grow(n); |
| 100 | size_ = n; |
| 101 | } |
| 102 | |
| 103 | void fill(const T& val) { |
| 104 | for (uint32_t i = 0; i < size(); i++) { |
| 105 | ptr_[i] = val; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | // Guarantees src is empty at end. |
| 110 | // Provided for the hash table resizing code below. |
| 111 | void MoveFrom(Vec<T>* src) { |
| 112 | if (src->ptr_ == src->space_) { |
| 113 | // Need to actually copy |
| 114 | resize(src->size_); |
| 115 | std::copy(src->ptr_, src->ptr_ + src->size_, ptr_); |
| 116 | src->size_ = 0; |
| 117 | } else { |
| 118 | Discard(); |
| 119 | ptr_ = src->ptr_; |
| 120 | size_ = src->size_; |
| 121 | capacity_ = src->capacity_; |
| 122 | src->Init(); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | private: |
| 127 | T* ptr_; |
| 128 | T space_[kInline]; |
| 129 | uint32_t size_; |
| 130 | uint32_t capacity_; |
| 131 | |
| 132 | void Init() { |
| 133 | ptr_ = space_; |
| 134 | size_ = 0; |
| 135 | capacity_ = kInline; |
| 136 | } |
| 137 | |
| 138 | void Discard() { |
| 139 | if (ptr_ != space_) base_internal::LowLevelAlloc::Free(ptr_); |
| 140 | } |
| 141 | |
| 142 | void Grow(uint32_t n) { |
| 143 | while (capacity_ < n) { |
| 144 | capacity_ *= 2; |
| 145 | } |
| 146 | size_t request = static_cast<size_t>(capacity_) * sizeof(T); |
| 147 | T* copy = static_cast<T*>( |
| 148 | base_internal::LowLevelAlloc::AllocWithArena(request, arena)); |
| 149 | std::copy(ptr_, ptr_ + size_, copy); |
| 150 | Discard(); |
| 151 | ptr_ = copy; |
| 152 | } |
| 153 | |
| 154 | Vec(const Vec&) = delete; |
| 155 | Vec& operator=(const Vec&) = delete; |
| 156 | }; |
| 157 | |
| 158 | // A hash set of non-negative int32_t that uses Vec for its underlying storage. |
| 159 | class NodeSet { |
| 160 | public: |
| 161 | NodeSet() { Init(); } |
| 162 | |
| 163 | void clear() { Init(); } |
| 164 | bool contains(int32_t v) const { return table_[FindIndex(v)] == v; } |
| 165 | |
| 166 | bool insert(int32_t v) { |
| 167 | uint32_t i = FindIndex(v); |
| 168 | if (table_[i] == v) { |
| 169 | return false; |
| 170 | } |
| 171 | if (table_[i] == kEmpty) { |
| 172 | // Only inserting over an empty cell increases the number of occupied |
| 173 | // slots. |
| 174 | occupied_++; |
| 175 | } |
| 176 | table_[i] = v; |
| 177 | // Double when 75% full. |
| 178 | if (occupied_ >= table_.size() - table_.size()/4) Grow(); |
| 179 | return true; |
| 180 | } |
| 181 | |
| 182 | void erase(uint32_t v) { |
| 183 | uint32_t i = FindIndex(v); |
| 184 | if (static_cast<uint32_t>(table_[i]) == v) { |
| 185 | table_[i] = kDel; |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | // Iteration: is done via HASH_FOR_EACH |
| 190 | // Example: |
| 191 | // HASH_FOR_EACH(elem, node->out) { ... } |
| 192 | #define HASH_FOR_EACH(elem, eset) \ |
| 193 | for (int32_t elem, _cursor = 0; (eset).Next(&_cursor, &elem); ) |
| 194 | bool Next(int32_t* cursor, int32_t* elem) { |
| 195 | while (static_cast<uint32_t>(*cursor) < table_.size()) { |
| 196 | int32_t v = table_[*cursor]; |
| 197 | (*cursor)++; |
| 198 | if (v >= 0) { |
| 199 | *elem = v; |
| 200 | return true; |
| 201 | } |
| 202 | } |
| 203 | return false; |
| 204 | } |
| 205 | |
| 206 | private: |
| 207 | enum : int32_t { kEmpty = -1, kDel = -2 }; |
| 208 | Vec<int32_t> table_; |
| 209 | uint32_t occupied_; // Count of non-empty slots (includes deleted slots) |
| 210 | |
| 211 | static uint32_t Hash(uint32_t a) { return a * 41; } |
| 212 | |
| 213 | // Return index for storing v. May return an empty index or deleted index |
| 214 | int FindIndex(int32_t v) const { |
| 215 | // Search starting at hash index. |
| 216 | const uint32_t mask = table_.size() - 1; |
| 217 | uint32_t i = Hash(v) & mask; |
| 218 | int deleted_index = -1; // If >= 0, index of first deleted element we see |
| 219 | while (true) { |
| 220 | int32_t e = table_[i]; |
| 221 | if (v == e) { |
| 222 | return i; |
| 223 | } else if (e == kEmpty) { |
| 224 | // Return any previously encountered deleted slot. |
| 225 | return (deleted_index >= 0) ? deleted_index : i; |
| 226 | } else if (e == kDel && deleted_index < 0) { |
| 227 | // Keep searching since v might be present later. |
| 228 | deleted_index = i; |
| 229 | } |
| 230 | i = (i + 1) & mask; // Linear probing; quadratic is slightly slower. |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | void Init() { |
| 235 | table_.clear(); |
| 236 | table_.resize(kInline); |
| 237 | table_.fill(kEmpty); |
| 238 | occupied_ = 0; |
| 239 | } |
| 240 | |
| 241 | void Grow() { |
| 242 | Vec<int32_t> copy; |
| 243 | copy.MoveFrom(&table_); |
| 244 | occupied_ = 0; |
| 245 | table_.resize(copy.size() * 2); |
| 246 | table_.fill(kEmpty); |
| 247 | |
| 248 | for (const auto& e : copy) { |
| 249 | if (e >= 0) insert(e); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | NodeSet(const NodeSet&) = delete; |
| 254 | NodeSet& operator=(const NodeSet&) = delete; |
| 255 | }; |
| 256 | |
| 257 | // We encode a node index and a node version in GraphId. The version |
| 258 | // number is incremented when the GraphId is freed which automatically |
| 259 | // invalidates all copies of the GraphId. |
| 260 | |
| 261 | inline GraphId MakeId(int32_t index, uint32_t version) { |
| 262 | GraphId g; |
| 263 | g.handle = |
| 264 | (static_cast<uint64_t>(version) << 32) | static_cast<uint32_t>(index); |
| 265 | return g; |
| 266 | } |
| 267 | |
| 268 | inline int32_t NodeIndex(GraphId id) { |
| 269 | return static_cast<uint32_t>(id.handle & 0xfffffffful); |
| 270 | } |
| 271 | |
| 272 | inline uint32_t NodeVersion(GraphId id) { |
| 273 | return static_cast<uint32_t>(id.handle >> 32); |
| 274 | } |
| 275 | |
| 276 | struct Node { |
| 277 | int32_t rank; // rank number assigned by Pearce-Kelly algorithm |
| 278 | uint32_t version; // Current version number |
| 279 | int32_t next_hash; // Next entry in hash table |
| 280 | bool visited; // Temporary marker used by depth-first-search |
| 281 | uintptr_t masked_ptr; // User-supplied pointer |
| 282 | NodeSet in; // List of immediate predecessor nodes in graph |
| 283 | NodeSet out; // List of immediate successor nodes in graph |
| 284 | int priority; // Priority of recorded stack trace. |
| 285 | int nstack; // Depth of recorded stack trace. |
| 286 | void* stack[40]; // stack[0,nstack-1] holds stack trace for node. |
| 287 | }; |
| 288 | |
| 289 | // Hash table for pointer to node index lookups. |
| 290 | class PointerMap { |
| 291 | public: |
| 292 | explicit PointerMap(const Vec<Node*>* nodes) : nodes_(nodes) { |
| 293 | table_.fill(-1); |
| 294 | } |
| 295 | |
| 296 | int32_t Find(void* ptr) { |
| 297 | auto masked = base_internal::HidePtr(ptr); |
| 298 | for (int32_t i = table_[Hash(ptr)]; i != -1;) { |
| 299 | Node* n = (*nodes_)[i]; |
| 300 | if (n->masked_ptr == masked) return i; |
| 301 | i = n->next_hash; |
| 302 | } |
| 303 | return -1; |
| 304 | } |
| 305 | |
| 306 | void Add(void* ptr, int32_t i) { |
| 307 | int32_t* head = &table_[Hash(ptr)]; |
| 308 | (*nodes_)[i]->next_hash = *head; |
| 309 | *head = i; |
| 310 | } |
| 311 | |
| 312 | int32_t Remove(void* ptr) { |
| 313 | // Advance through linked list while keeping track of the |
| 314 | // predecessor slot that points to the current entry. |
| 315 | auto masked = base_internal::HidePtr(ptr); |
| 316 | for (int32_t* slot = &table_[Hash(ptr)]; *slot != -1; ) { |
| 317 | int32_t index = *slot; |
| 318 | Node* n = (*nodes_)[index]; |
| 319 | if (n->masked_ptr == masked) { |
| 320 | *slot = n->next_hash; // Remove n from linked list |
| 321 | n->next_hash = -1; |
| 322 | return index; |
| 323 | } |
| 324 | slot = &n->next_hash; |
| 325 | } |
| 326 | return -1; |
| 327 | } |
| 328 | |
| 329 | private: |
| 330 | // Number of buckets in hash table for pointer lookups. |
| 331 | static constexpr uint32_t kHashTableSize = 8171; // should be prime |
| 332 | |
| 333 | const Vec<Node*>* nodes_; |
| 334 | std::array<int32_t, kHashTableSize> table_; |
| 335 | |
| 336 | static uint32_t Hash(void* ptr) { |
| 337 | return reinterpret_cast<uintptr_t>(ptr) % kHashTableSize; |
| 338 | } |
| 339 | }; |
| 340 | |
| 341 | } // namespace |
| 342 | |
| 343 | struct GraphCycles::Rep { |
| 344 | Vec<Node*> nodes_; |
| 345 | Vec<int32_t> free_nodes_; // Indices for unused entries in nodes_ |
| 346 | PointerMap ptrmap_; |
| 347 | |
| 348 | // Temporary state. |
| 349 | Vec<int32_t> deltaf_; // Results of forward DFS |
| 350 | Vec<int32_t> deltab_; // Results of backward DFS |
| 351 | Vec<int32_t> list_; // All nodes to reprocess |
| 352 | Vec<int32_t> merged_; // Rank values to assign to list_ entries |
| 353 | Vec<int32_t> stack_; // Emulates recursion stack for depth-first searches |
| 354 | |
| 355 | Rep() : ptrmap_(&nodes_) {} |
| 356 | }; |
| 357 | |
| 358 | static Node* FindNode(GraphCycles::Rep* rep, GraphId id) { |
| 359 | Node* n = rep->nodes_[NodeIndex(id)]; |
| 360 | return (n->version == NodeVersion(id)) ? n : nullptr; |
| 361 | } |
| 362 | |
| 363 | GraphCycles::GraphCycles() { |
| 364 | InitArenaIfNecessary(); |
| 365 | rep_ = new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Rep), arena)) |
| 366 | Rep; |
| 367 | } |
| 368 | |
| 369 | GraphCycles::~GraphCycles() { |
| 370 | for (auto* node : rep_->nodes_) { |
| 371 | node->Node::~Node(); |
| 372 | base_internal::LowLevelAlloc::Free(node); |
| 373 | } |
| 374 | rep_->Rep::~Rep(); |
| 375 | base_internal::LowLevelAlloc::Free(rep_); |
| 376 | } |
| 377 | |
| 378 | bool GraphCycles::CheckInvariants() const { |
| 379 | Rep* r = rep_; |
| 380 | NodeSet ranks; // Set of ranks seen so far. |
| 381 | for (uint32_t x = 0; x < r->nodes_.size(); x++) { |
| 382 | Node* nx = r->nodes_[x]; |
| 383 | void* ptr = base_internal::UnhidePtr<void>(nx->masked_ptr); |
| 384 | if (ptr != nullptr && static_cast<uint32_t>(r->ptrmap_.Find(ptr)) != x) { |
| 385 | ABSL_RAW_LOG(FATAL, "Did not find live node in hash table %u %p", x, ptr); |
| 386 | } |
| 387 | if (nx->visited) { |
| 388 | ABSL_RAW_LOG(FATAL, "Did not clear visited marker on node %u", x); |
| 389 | } |
| 390 | if (!ranks.insert(nx->rank)) { |
| 391 | ABSL_RAW_LOG(FATAL, "Duplicate occurrence of rank %d", nx->rank); |
| 392 | } |
| 393 | HASH_FOR_EACH(y, nx->out) { |
| 394 | Node* ny = r->nodes_[y]; |
| 395 | if (nx->rank >= ny->rank) { |
| 396 | ABSL_RAW_LOG(FATAL, "Edge %u->%d has bad rank assignment %d->%d", x, y, |
| 397 | nx->rank, ny->rank); |
| 398 | } |
| 399 | } |
| 400 | } |
| 401 | return true; |
| 402 | } |
| 403 | |
| 404 | GraphId GraphCycles::GetId(void* ptr) { |
| 405 | int32_t i = rep_->ptrmap_.Find(ptr); |
| 406 | if (i != -1) { |
| 407 | return MakeId(i, rep_->nodes_[i]->version); |
| 408 | } else if (rep_->free_nodes_.empty()) { |
| 409 | Node* n = |
| 410 | new (base_internal::LowLevelAlloc::AllocWithArena(sizeof(Node), arena)) |
| 411 | Node; |
| 412 | n->version = 1; // Avoid 0 since it is used by InvalidGraphId() |
| 413 | n->visited = false; |
| 414 | n->rank = rep_->nodes_.size(); |
| 415 | n->masked_ptr = base_internal::HidePtr(ptr); |
| 416 | n->nstack = 0; |
| 417 | n->priority = 0; |
| 418 | rep_->nodes_.push_back(n); |
| 419 | rep_->ptrmap_.Add(ptr, n->rank); |
| 420 | return MakeId(n->rank, n->version); |
| 421 | } else { |
| 422 | // Preserve preceding rank since the set of ranks in use must be |
| 423 | // a permutation of [0,rep_->nodes_.size()-1]. |
| 424 | int32_t r = rep_->free_nodes_.back(); |
| 425 | rep_->free_nodes_.pop_back(); |
| 426 | Node* n = rep_->nodes_[r]; |
| 427 | n->masked_ptr = base_internal::HidePtr(ptr); |
| 428 | n->nstack = 0; |
| 429 | n->priority = 0; |
| 430 | rep_->ptrmap_.Add(ptr, r); |
| 431 | return MakeId(r, n->version); |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | void GraphCycles::RemoveNode(void* ptr) { |
| 436 | int32_t i = rep_->ptrmap_.Remove(ptr); |
| 437 | if (i == -1) { |
| 438 | return; |
| 439 | } |
| 440 | Node* x = rep_->nodes_[i]; |
| 441 | HASH_FOR_EACH(y, x->out) { |
| 442 | rep_->nodes_[y]->in.erase(i); |
| 443 | } |
| 444 | HASH_FOR_EACH(y, x->in) { |
| 445 | rep_->nodes_[y]->out.erase(i); |
| 446 | } |
| 447 | x->in.clear(); |
| 448 | x->out.clear(); |
| 449 | x->masked_ptr = base_internal::HidePtr<void>(nullptr); |
| 450 | if (x->version == std::numeric_limits<uint32_t>::max()) { |
| 451 | // Cannot use x any more |
| 452 | } else { |
| 453 | x->version++; // Invalidates all copies of node. |
| 454 | rep_->free_nodes_.push_back(i); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | void* GraphCycles::Ptr(GraphId id) { |
| 459 | Node* n = FindNode(rep_, id); |
| 460 | return n == nullptr ? nullptr |
| 461 | : base_internal::UnhidePtr<void>(n->masked_ptr); |
| 462 | } |
| 463 | |
| 464 | bool GraphCycles::HasNode(GraphId node) { |
| 465 | return FindNode(rep_, node) != nullptr; |
| 466 | } |
| 467 | |
| 468 | bool GraphCycles::HasEdge(GraphId x, GraphId y) const { |
| 469 | Node* xn = FindNode(rep_, x); |
| 470 | return xn && FindNode(rep_, y) && xn->out.contains(NodeIndex(y)); |
| 471 | } |
| 472 | |
| 473 | void GraphCycles::RemoveEdge(GraphId x, GraphId y) { |
| 474 | Node* xn = FindNode(rep_, x); |
| 475 | Node* yn = FindNode(rep_, y); |
| 476 | if (xn && yn) { |
| 477 | xn->out.erase(NodeIndex(y)); |
| 478 | yn->in.erase(NodeIndex(x)); |
| 479 | // No need to update the rank assignment since a previous valid |
| 480 | // rank assignment remains valid after an edge deletion. |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound); |
| 485 | static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound); |
| 486 | static void Reorder(GraphCycles::Rep* r); |
| 487 | static void Sort(const Vec<Node*>&, Vec<int32_t>* delta); |
| 488 | static void MoveToList( |
| 489 | GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst); |
| 490 | |
| 491 | bool GraphCycles::InsertEdge(GraphId idx, GraphId idy) { |
| 492 | Rep* r = rep_; |
| 493 | const int32_t x = NodeIndex(idx); |
| 494 | const int32_t y = NodeIndex(idy); |
| 495 | Node* nx = FindNode(r, idx); |
| 496 | Node* ny = FindNode(r, idy); |
| 497 | if (nx == nullptr || ny == nullptr) return true; // Expired ids |
| 498 | |
| 499 | if (nx == ny) return false; // Self edge |
| 500 | if (!nx->out.insert(y)) { |
| 501 | // Edge already exists. |
| 502 | return true; |
| 503 | } |
| 504 | |
| 505 | ny->in.insert(x); |
| 506 | |
| 507 | if (nx->rank <= ny->rank) { |
| 508 | // New edge is consistent with existing rank assignment. |
| 509 | return true; |
| 510 | } |
| 511 | |
| 512 | // Current rank assignments are incompatible with the new edge. Recompute. |
| 513 | // We only need to consider nodes that fall in the range [ny->rank,nx->rank]. |
| 514 | if (!ForwardDFS(r, y, nx->rank)) { |
| 515 | // Found a cycle. Undo the insertion and tell caller. |
| 516 | nx->out.erase(y); |
| 517 | ny->in.erase(x); |
| 518 | // Since we do not call Reorder() on this path, clear any visited |
| 519 | // markers left by ForwardDFS. |
| 520 | for (const auto& d : r->deltaf_) { |
| 521 | r->nodes_[d]->visited = false; |
| 522 | } |
| 523 | return false; |
| 524 | } |
| 525 | BackwardDFS(r, x, ny->rank); |
| 526 | Reorder(r); |
| 527 | return true; |
| 528 | } |
| 529 | |
| 530 | static bool ForwardDFS(GraphCycles::Rep* r, int32_t n, int32_t upper_bound) { |
| 531 | // Avoid recursion since stack space might be limited. |
| 532 | // We instead keep a stack of nodes to visit. |
| 533 | r->deltaf_.clear(); |
| 534 | r->stack_.clear(); |
| 535 | r->stack_.push_back(n); |
| 536 | while (!r->stack_.empty()) { |
| 537 | n = r->stack_.back(); |
| 538 | r->stack_.pop_back(); |
| 539 | Node* nn = r->nodes_[n]; |
| 540 | if (nn->visited) continue; |
| 541 | |
| 542 | nn->visited = true; |
| 543 | r->deltaf_.push_back(n); |
| 544 | |
| 545 | HASH_FOR_EACH(w, nn->out) { |
| 546 | Node* nw = r->nodes_[w]; |
| 547 | if (nw->rank == upper_bound) { |
| 548 | return false; // Cycle |
| 549 | } |
| 550 | if (!nw->visited && nw->rank < upper_bound) { |
| 551 | r->stack_.push_back(w); |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | return true; |
| 556 | } |
| 557 | |
| 558 | static void BackwardDFS(GraphCycles::Rep* r, int32_t n, int32_t lower_bound) { |
| 559 | r->deltab_.clear(); |
| 560 | r->stack_.clear(); |
| 561 | r->stack_.push_back(n); |
| 562 | while (!r->stack_.empty()) { |
| 563 | n = r->stack_.back(); |
| 564 | r->stack_.pop_back(); |
| 565 | Node* nn = r->nodes_[n]; |
| 566 | if (nn->visited) continue; |
| 567 | |
| 568 | nn->visited = true; |
| 569 | r->deltab_.push_back(n); |
| 570 | |
| 571 | HASH_FOR_EACH(w, nn->in) { |
| 572 | Node* nw = r->nodes_[w]; |
| 573 | if (!nw->visited && lower_bound < nw->rank) { |
| 574 | r->stack_.push_back(w); |
| 575 | } |
| 576 | } |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | static void Reorder(GraphCycles::Rep* r) { |
| 581 | Sort(r->nodes_, &r->deltab_); |
| 582 | Sort(r->nodes_, &r->deltaf_); |
| 583 | |
| 584 | // Adds contents of delta lists to list_ (backwards deltas first). |
| 585 | r->list_.clear(); |
| 586 | MoveToList(r, &r->deltab_, &r->list_); |
| 587 | MoveToList(r, &r->deltaf_, &r->list_); |
| 588 | |
| 589 | // Produce sorted list of all ranks that will be reassigned. |
| 590 | r->merged_.resize(r->deltab_.size() + r->deltaf_.size()); |
| 591 | std::merge(r->deltab_.begin(), r->deltab_.end(), |
| 592 | r->deltaf_.begin(), r->deltaf_.end(), |
| 593 | r->merged_.begin()); |
| 594 | |
| 595 | // Assign the ranks in order to the collected list. |
| 596 | for (uint32_t i = 0; i < r->list_.size(); i++) { |
| 597 | r->nodes_[r->list_[i]]->rank = r->merged_[i]; |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | static void Sort(const Vec<Node*>& nodes, Vec<int32_t>* delta) { |
| 602 | struct ByRank { |
| 603 | const Vec<Node*>* nodes; |
| 604 | bool operator()(int32_t a, int32_t b) const { |
| 605 | return (*nodes)[a]->rank < (*nodes)[b]->rank; |
| 606 | } |
| 607 | }; |
| 608 | ByRank cmp; |
| 609 | cmp.nodes = &nodes; |
| 610 | std::sort(delta->begin(), delta->end(), cmp); |
| 611 | } |
| 612 | |
| 613 | static void MoveToList( |
| 614 | GraphCycles::Rep* r, Vec<int32_t>* src, Vec<int32_t>* dst) { |
| 615 | for (auto& v : *src) { |
| 616 | int32_t w = v; |
| 617 | v = r->nodes_[w]->rank; // Replace v entry with its rank |
| 618 | r->nodes_[w]->visited = false; // Prepare for future DFS calls |
| 619 | dst->push_back(w); |
| 620 | } |
| 621 | } |
| 622 | |
| 623 | int GraphCycles::FindPath(GraphId idx, GraphId idy, int max_path_len, |
| 624 | GraphId path[]) const { |
| 625 | Rep* r = rep_; |
| 626 | if (FindNode(r, idx) == nullptr || FindNode(r, idy) == nullptr) return 0; |
| 627 | const int32_t x = NodeIndex(idx); |
| 628 | const int32_t y = NodeIndex(idy); |
| 629 | |
| 630 | // Forward depth first search starting at x until we hit y. |
| 631 | // As we descend into a node, we push it onto the path. |
| 632 | // As we leave a node, we remove it from the path. |
| 633 | int path_len = 0; |
| 634 | |
| 635 | NodeSet seen; |
| 636 | r->stack_.clear(); |
| 637 | r->stack_.push_back(x); |
| 638 | while (!r->stack_.empty()) { |
| 639 | int32_t n = r->stack_.back(); |
| 640 | r->stack_.pop_back(); |
| 641 | if (n < 0) { |
| 642 | // Marker to indicate that we are leaving a node |
| 643 | path_len--; |
| 644 | continue; |
| 645 | } |
| 646 | |
| 647 | if (path_len < max_path_len) { |
| 648 | path[path_len] = MakeId(n, rep_->nodes_[n]->version); |
| 649 | } |
| 650 | path_len++; |
| 651 | r->stack_.push_back(-1); // Will remove tentative path entry |
| 652 | |
| 653 | if (n == y) { |
| 654 | return path_len; |
| 655 | } |
| 656 | |
| 657 | HASH_FOR_EACH(w, r->nodes_[n]->out) { |
| 658 | if (seen.insert(w)) { |
| 659 | r->stack_.push_back(w); |
| 660 | } |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | return 0; |
| 665 | } |
| 666 | |
| 667 | bool GraphCycles::IsReachable(GraphId x, GraphId y) const { |
| 668 | return FindPath(x, y, 0, nullptr) > 0; |
| 669 | } |
| 670 | |
| 671 | void GraphCycles::UpdateStackTrace(GraphId id, int priority, |
| 672 | int (*get_stack_trace)(void** stack, int)) { |
| 673 | Node* n = FindNode(rep_, id); |
| 674 | if (n == nullptr || n->priority >= priority) { |
| 675 | return; |
| 676 | } |
| 677 | n->nstack = (*get_stack_trace)(n->stack, ABSL_ARRAYSIZE(n->stack)); |
| 678 | n->priority = priority; |
| 679 | } |
| 680 | |
| 681 | int GraphCycles::GetStackTrace(GraphId id, void*** ptr) { |
| 682 | Node* n = FindNode(rep_, id); |
| 683 | if (n == nullptr) { |
| 684 | *ptr = nullptr; |
| 685 | return 0; |
| 686 | } else { |
| 687 | *ptr = n->stack; |
| 688 | return n->nstack; |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | } // namespace synchronization_internal |
| 693 | } // namespace absl |
| 694 | |
| 695 | #endif // ABSL_LOW_LEVEL_ALLOC_MISSING |