Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <Eigen/StdVector> |
| 12 | #include <Eigen/Geometry> |
| 13 | |
| 14 | template<typename MatrixType> |
| 15 | void check_stdvector_matrix(const MatrixType& m) |
| 16 | { |
| 17 | typename MatrixType::Index rows = m.rows(); |
| 18 | typename MatrixType::Index cols = m.cols(); |
| 19 | MatrixType x = MatrixType::Random(rows,cols), y = MatrixType::Random(rows,cols); |
| 20 | std::vector<MatrixType,Eigen::aligned_allocator<MatrixType> > v(10, MatrixType(rows,cols)), w(20, y); |
| 21 | v[5] = x; |
| 22 | w[6] = v[5]; |
| 23 | VERIFY_IS_APPROX(w[6], v[5]); |
| 24 | v = w; |
| 25 | for(int i = 0; i < 20; i++) |
| 26 | { |
| 27 | VERIFY_IS_APPROX(w[i], v[i]); |
| 28 | } |
| 29 | |
| 30 | v.resize(21); |
| 31 | v[20] = x; |
| 32 | VERIFY_IS_APPROX(v[20], x); |
| 33 | v.resize(22,y); |
| 34 | VERIFY_IS_APPROX(v[21], y); |
| 35 | v.push_back(x); |
| 36 | VERIFY_IS_APPROX(v[22], x); |
| 37 | VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(MatrixType)); |
| 38 | |
| 39 | // do a lot of push_back such that the vector gets internally resized |
| 40 | // (with memory reallocation) |
| 41 | MatrixType* ref = &w[0]; |
| 42 | for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) |
| 43 | v.push_back(w[i%w.size()]); |
| 44 | for(unsigned int i=23; i<v.size(); ++i) |
| 45 | { |
| 46 | VERIFY(v[i]==w[(i-23)%w.size()]); |
| 47 | } |
| 48 | } |
| 49 | |
| 50 | template<typename TransformType> |
| 51 | void check_stdvector_transform(const TransformType&) |
| 52 | { |
| 53 | typedef typename TransformType::MatrixType MatrixType; |
| 54 | TransformType x(MatrixType::Random()), y(MatrixType::Random()); |
| 55 | std::vector<TransformType,Eigen::aligned_allocator<TransformType> > v(10), w(20, y); |
| 56 | v[5] = x; |
| 57 | w[6] = v[5]; |
| 58 | VERIFY_IS_APPROX(w[6], v[5]); |
| 59 | v = w; |
| 60 | for(int i = 0; i < 20; i++) |
| 61 | { |
| 62 | VERIFY_IS_APPROX(w[i], v[i]); |
| 63 | } |
| 64 | |
| 65 | v.resize(21); |
| 66 | v[20] = x; |
| 67 | VERIFY_IS_APPROX(v[20], x); |
| 68 | v.resize(22,y); |
| 69 | VERIFY_IS_APPROX(v[21], y); |
| 70 | v.push_back(x); |
| 71 | VERIFY_IS_APPROX(v[22], x); |
| 72 | VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(TransformType)); |
| 73 | |
| 74 | // do a lot of push_back such that the vector gets internally resized |
| 75 | // (with memory reallocation) |
| 76 | TransformType* ref = &w[0]; |
| 77 | for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) |
| 78 | v.push_back(w[i%w.size()]); |
| 79 | for(unsigned int i=23; i<v.size(); ++i) |
| 80 | { |
| 81 | VERIFY(v[i].matrix()==w[(i-23)%w.size()].matrix()); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | template<typename QuaternionType> |
| 86 | void check_stdvector_quaternion(const QuaternionType&) |
| 87 | { |
| 88 | typedef typename QuaternionType::Coefficients Coefficients; |
| 89 | QuaternionType x(Coefficients::Random()), y(Coefficients::Random()); |
| 90 | std::vector<QuaternionType,Eigen::aligned_allocator<QuaternionType> > v(10), w(20, y); |
| 91 | v[5] = x; |
| 92 | w[6] = v[5]; |
| 93 | VERIFY_IS_APPROX(w[6], v[5]); |
| 94 | v = w; |
| 95 | for(int i = 0; i < 20; i++) |
| 96 | { |
| 97 | VERIFY_IS_APPROX(w[i], v[i]); |
| 98 | } |
| 99 | |
| 100 | v.resize(21); |
| 101 | v[20] = x; |
| 102 | VERIFY_IS_APPROX(v[20], x); |
| 103 | v.resize(22,y); |
| 104 | VERIFY_IS_APPROX(v[21], y); |
| 105 | v.push_back(x); |
| 106 | VERIFY_IS_APPROX(v[22], x); |
| 107 | VERIFY((size_t)&(v[22]) == (size_t)&(v[21]) + sizeof(QuaternionType)); |
| 108 | |
| 109 | // do a lot of push_back such that the vector gets internally resized |
| 110 | // (with memory reallocation) |
| 111 | QuaternionType* ref = &w[0]; |
| 112 | for(int i=0; i<30 || ((ref==&w[0]) && i<300); ++i) |
| 113 | v.push_back(w[i%w.size()]); |
| 114 | for(unsigned int i=23; i<v.size(); ++i) |
| 115 | { |
| 116 | VERIFY(v[i].coeffs()==w[(i-23)%w.size()].coeffs()); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | void test_stdvector() |
| 121 | { |
| 122 | // some non vectorizable fixed sizes |
| 123 | CALL_SUBTEST_1(check_stdvector_matrix(Vector2f())); |
| 124 | CALL_SUBTEST_1(check_stdvector_matrix(Matrix3f())); |
| 125 | CALL_SUBTEST_2(check_stdvector_matrix(Matrix3d())); |
| 126 | |
| 127 | // some vectorizable fixed sizes |
| 128 | CALL_SUBTEST_1(check_stdvector_matrix(Matrix2f())); |
| 129 | CALL_SUBTEST_1(check_stdvector_matrix(Vector4f())); |
| 130 | CALL_SUBTEST_1(check_stdvector_matrix(Matrix4f())); |
| 131 | CALL_SUBTEST_2(check_stdvector_matrix(Matrix4d())); |
| 132 | |
| 133 | // some dynamic sizes |
| 134 | CALL_SUBTEST_3(check_stdvector_matrix(MatrixXd(1,1))); |
| 135 | CALL_SUBTEST_3(check_stdvector_matrix(VectorXd(20))); |
| 136 | CALL_SUBTEST_3(check_stdvector_matrix(RowVectorXf(20))); |
| 137 | CALL_SUBTEST_3(check_stdvector_matrix(MatrixXcf(10,10))); |
| 138 | |
| 139 | // some Transform |
| 140 | CALL_SUBTEST_4(check_stdvector_transform(Projective2f())); |
| 141 | CALL_SUBTEST_4(check_stdvector_transform(Projective3f())); |
| 142 | CALL_SUBTEST_4(check_stdvector_transform(Projective3d())); |
| 143 | //CALL_SUBTEST(heck_stdvector_transform(Projective4d())); |
| 144 | |
| 145 | // some Quaternion |
| 146 | CALL_SUBTEST_5(check_stdvector_quaternion(Quaternionf())); |
| 147 | CALL_SUBTEST_5(check_stdvector_quaternion(Quaterniond())); |
| 148 | } |