Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <limits> |
| 12 | #include <Eigen/Eigenvalues> |
| 13 | |
| 14 | template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T) |
| 15 | { |
| 16 | typedef typename MatrixType::Index Index; |
| 17 | |
| 18 | const Index size = T.cols(); |
| 19 | typedef typename MatrixType::Scalar Scalar; |
| 20 | |
| 21 | // Check T is lower Hessenberg |
| 22 | for(int row = 2; row < size; ++row) { |
| 23 | for(int col = 0; col < row - 1; ++col) { |
| 24 | VERIFY(T(row,col) == Scalar(0)); |
| 25 | } |
| 26 | } |
| 27 | |
| 28 | // Check that any non-zero on the subdiagonal is followed by a zero and is |
| 29 | // part of a 2x2 diagonal block with imaginary eigenvalues. |
| 30 | for(int row = 1; row < size; ++row) { |
| 31 | if (T(row,row-1) != Scalar(0)) { |
| 32 | VERIFY(row == size-1 || T(row+1,row) == 0); |
| 33 | Scalar tr = T(row-1,row-1) + T(row,row); |
| 34 | Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1); |
| 35 | VERIFY(4 * det > tr * tr); |
| 36 | } |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime) |
| 41 | { |
| 42 | // Test basic functionality: T is quasi-triangular and A = U T U* |
| 43 | for(int counter = 0; counter < g_repeat; ++counter) { |
| 44 | MatrixType A = MatrixType::Random(size, size); |
| 45 | RealSchur<MatrixType> schurOfA(A); |
| 46 | VERIFY_IS_EQUAL(schurOfA.info(), Success); |
| 47 | MatrixType U = schurOfA.matrixU(); |
| 48 | MatrixType T = schurOfA.matrixT(); |
| 49 | verifyIsQuasiTriangular(T); |
| 50 | VERIFY_IS_APPROX(A, U * T * U.transpose()); |
| 51 | } |
| 52 | |
| 53 | // Test asserts when not initialized |
| 54 | RealSchur<MatrixType> rsUninitialized; |
| 55 | VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); |
| 56 | VERIFY_RAISES_ASSERT(rsUninitialized.matrixU()); |
| 57 | VERIFY_RAISES_ASSERT(rsUninitialized.info()); |
| 58 | |
| 59 | // Test whether compute() and constructor returns same result |
| 60 | MatrixType A = MatrixType::Random(size, size); |
| 61 | RealSchur<MatrixType> rs1; |
| 62 | rs1.compute(A); |
| 63 | RealSchur<MatrixType> rs2(A); |
| 64 | VERIFY_IS_EQUAL(rs1.info(), Success); |
| 65 | VERIFY_IS_EQUAL(rs2.info(), Success); |
| 66 | VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); |
| 67 | VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU()); |
| 68 | |
| 69 | // Test maximum number of iterations |
| 70 | RealSchur<MatrixType> rs3; |
| 71 | rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A); |
| 72 | VERIFY_IS_EQUAL(rs3.info(), Success); |
| 73 | VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); |
| 74 | VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU()); |
| 75 | if (size > 2) { |
| 76 | rs3.setMaxIterations(1).compute(A); |
| 77 | VERIFY_IS_EQUAL(rs3.info(), NoConvergence); |
| 78 | VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1); |
| 79 | } |
| 80 | |
| 81 | MatrixType Atriangular = A; |
| 82 | Atriangular.template triangularView<StrictlyLower>().setZero(); |
| 83 | rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations |
| 84 | VERIFY_IS_EQUAL(rs3.info(), Success); |
| 85 | VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular); |
| 86 | VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size)); |
| 87 | |
| 88 | // Test computation of only T, not U |
| 89 | RealSchur<MatrixType> rsOnlyT(A, false); |
| 90 | VERIFY_IS_EQUAL(rsOnlyT.info(), Success); |
| 91 | VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); |
| 92 | VERIFY_RAISES_ASSERT(rsOnlyT.matrixU()); |
| 93 | |
| 94 | if (size > 2) |
| 95 | { |
| 96 | // Test matrix with NaN |
| 97 | A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN(); |
| 98 | RealSchur<MatrixType> rsNaN(A); |
| 99 | VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | void test_schur_real() |
| 104 | { |
| 105 | CALL_SUBTEST_1(( schur<Matrix4f>() )); |
| 106 | CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) )); |
| 107 | CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() )); |
| 108 | CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() )); |
| 109 | |
| 110 | // Test problem size constructors |
| 111 | CALL_SUBTEST_5(RealSchur<MatrixXf>(10)); |
| 112 | } |