Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | // discard stack allocation as that too bypasses malloc |
| 12 | #define EIGEN_STACK_ALLOCATION_LIMIT 0 |
| 13 | #define EIGEN_RUNTIME_NO_MALLOC |
| 14 | #include "main.h" |
| 15 | #include <Eigen/SVD> |
| 16 | |
| 17 | template<typename MatrixType, int QRPreconditioner> |
| 18 | void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd) |
| 19 | { |
| 20 | typedef typename MatrixType::Index Index; |
| 21 | Index rows = m.rows(); |
| 22 | Index cols = m.cols(); |
| 23 | |
| 24 | enum { |
| 25 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 26 | ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| 27 | }; |
| 28 | |
| 29 | typedef typename MatrixType::Scalar Scalar; |
| 30 | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; |
| 31 | typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; |
| 32 | |
| 33 | MatrixType sigma = MatrixType::Zero(rows,cols); |
| 34 | sigma.diagonal() = svd.singularValues().template cast<Scalar>(); |
| 35 | MatrixUType u = svd.matrixU(); |
| 36 | MatrixVType v = svd.matrixV(); |
| 37 | |
| 38 | VERIFY_IS_APPROX(m, u * sigma * v.adjoint()); |
| 39 | VERIFY_IS_UNITARY(u); |
| 40 | VERIFY_IS_UNITARY(v); |
| 41 | } |
| 42 | |
| 43 | template<typename MatrixType, int QRPreconditioner> |
| 44 | void jacobisvd_compare_to_full(const MatrixType& m, |
| 45 | unsigned int computationOptions, |
| 46 | const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd) |
| 47 | { |
| 48 | typedef typename MatrixType::Index Index; |
| 49 | Index rows = m.rows(); |
| 50 | Index cols = m.cols(); |
| 51 | Index diagSize = (std::min)(rows, cols); |
| 52 | |
| 53 | JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); |
| 54 | |
| 55 | VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); |
| 56 | if(computationOptions & ComputeFullU) |
| 57 | VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); |
| 58 | if(computationOptions & ComputeThinU) |
| 59 | VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); |
| 60 | if(computationOptions & ComputeFullV) |
| 61 | VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV()); |
| 62 | if(computationOptions & ComputeThinV) |
| 63 | VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize)); |
| 64 | } |
| 65 | |
| 66 | template<typename MatrixType, int QRPreconditioner> |
| 67 | void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions) |
| 68 | { |
| 69 | typedef typename MatrixType::Scalar Scalar; |
| 70 | typedef typename MatrixType::RealScalar RealScalar; |
| 71 | typedef typename MatrixType::Index Index; |
| 72 | Index rows = m.rows(); |
| 73 | Index cols = m.cols(); |
| 74 | |
| 75 | enum { |
| 76 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 77 | ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| 78 | }; |
| 79 | |
| 80 | typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType; |
| 81 | typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; |
| 82 | |
| 83 | RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols)); |
| 84 | JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); |
| 85 | |
| 86 | if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8); |
| 87 | else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(1e-4); |
| 88 | |
| 89 | SolutionType x = svd.solve(rhs); |
| 90 | |
| 91 | RealScalar residual = (m*x-rhs).norm(); |
| 92 | // Check that there is no significantly better solution in the neighborhood of x |
| 93 | if(!test_isMuchSmallerThan(residual,rhs.norm())) |
| 94 | { |
| 95 | // If the residual is very small, then we have an exact solution, so we are already good. |
| 96 | for(int k=0;k<x.rows();++k) |
| 97 | { |
| 98 | SolutionType y(x); |
| 99 | y.row(k).array() += 2*NumTraits<RealScalar>::epsilon(); |
| 100 | RealScalar residual_y = (m*y-rhs).norm(); |
| 101 | VERIFY( test_isApprox(residual_y,residual) || residual < residual_y ); |
| 102 | |
| 103 | y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon(); |
| 104 | residual_y = (m*y-rhs).norm(); |
| 105 | VERIFY( test_isApprox(residual_y,residual) || residual < residual_y ); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | // evaluate normal equation which works also for least-squares solutions |
| 110 | if(internal::is_same<RealScalar,double>::value) |
| 111 | { |
| 112 | // This test is not stable with single precision. |
| 113 | // This is probably because squaring m signicantly affects the precision. |
| 114 | VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs); |
| 115 | } |
| 116 | |
| 117 | // check minimal norm solutions |
| 118 | { |
| 119 | // generate a full-rank m x n problem with m<n |
| 120 | enum { |
| 121 | RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1, |
| 122 | RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1 |
| 123 | }; |
| 124 | typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2; |
| 125 | typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2; |
| 126 | typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T; |
| 127 | Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2); |
| 128 | MatrixType2 m2(rank,cols); |
| 129 | int guard = 0; |
| 130 | do { |
| 131 | m2.setRandom(); |
| 132 | } while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10); |
| 133 | VERIFY(guard<10); |
| 134 | RhsType2 rhs2 = RhsType2::Random(rank); |
| 135 | // use QR to find a reference minimal norm solution |
| 136 | HouseholderQR<MatrixType2T> qr(m2.adjoint()); |
| 137 | Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2); |
| 138 | tmp.conservativeResize(cols); |
| 139 | tmp.tail(cols-rank).setZero(); |
| 140 | SolutionType x21 = qr.householderQ() * tmp; |
| 141 | // now check with SVD |
| 142 | JacobiSVD<MatrixType2, ColPivHouseholderQRPreconditioner> svd2(m2, computationOptions); |
| 143 | SolutionType x22 = svd2.solve(rhs2); |
| 144 | VERIFY_IS_APPROX(m2*x21, rhs2); |
| 145 | VERIFY_IS_APPROX(m2*x22, rhs2); |
| 146 | VERIFY_IS_APPROX(x21, x22); |
| 147 | |
| 148 | // Now check with a rank deficient matrix |
| 149 | typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3; |
| 150 | typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3; |
| 151 | Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3); |
| 152 | Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank); |
| 153 | MatrixType3 m3 = C * m2; |
| 154 | RhsType3 rhs3 = C * rhs2; |
| 155 | JacobiSVD<MatrixType3, ColPivHouseholderQRPreconditioner> svd3(m3, computationOptions); |
| 156 | SolutionType x3 = svd3.solve(rhs3); |
| 157 | if(svd3.rank()!=rank) { |
| 158 | std::cout << m3 << "\n\n"; |
| 159 | std::cout << svd3.singularValues().transpose() << "\n"; |
| 160 | std::cout << svd3.rank() << " == " << rank << "\n"; |
| 161 | std::cout << x21.norm() << " == " << x3.norm() << "\n"; |
| 162 | } |
| 163 | // VERIFY_IS_APPROX(m3*x3, rhs3); |
| 164 | VERIFY_IS_APPROX(m3*x21, rhs3); |
| 165 | VERIFY_IS_APPROX(m2*x3, rhs2); |
| 166 | |
| 167 | VERIFY_IS_APPROX(x21, x3); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | template<typename MatrixType, int QRPreconditioner> |
| 172 | void jacobisvd_test_all_computation_options(const MatrixType& m) |
| 173 | { |
| 174 | if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols()) |
| 175 | return; |
| 176 | JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV); |
| 177 | CALL_SUBTEST(( jacobisvd_check_full(m, fullSvd) )); |
| 178 | CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV) )); |
| 179 | |
| 180 | #if defined __INTEL_COMPILER |
| 181 | // remark #111: statement is unreachable |
| 182 | #pragma warning disable 111 |
| 183 | #endif |
| 184 | if(QRPreconditioner == FullPivHouseholderQRPreconditioner) |
| 185 | return; |
| 186 | |
| 187 | CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU, fullSvd) )); |
| 188 | CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullV, fullSvd) )); |
| 189 | CALL_SUBTEST(( jacobisvd_compare_to_full(m, 0, fullSvd) )); |
| 190 | |
| 191 | if (MatrixType::ColsAtCompileTime == Dynamic) { |
| 192 | // thin U/V are only available with dynamic number of columns |
| 193 | CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) )); |
| 194 | CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinV, fullSvd) )); |
| 195 | CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) )); |
| 196 | CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU , fullSvd) )); |
| 197 | CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) )); |
| 198 | CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV) )); |
| 199 | CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV) )); |
| 200 | CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV) )); |
| 201 | |
| 202 | // test reconstruction |
| 203 | typedef typename MatrixType::Index Index; |
| 204 | Index diagSize = (std::min)(m.rows(), m.cols()); |
| 205 | JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV); |
| 206 | VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint()); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | template<typename MatrixType> |
| 211 | void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true) |
| 212 | { |
| 213 | MatrixType m = a; |
| 214 | if(pickrandom) |
| 215 | { |
| 216 | typedef typename MatrixType::Scalar Scalar; |
| 217 | typedef typename MatrixType::RealScalar RealScalar; |
| 218 | typedef typename MatrixType::Index Index; |
| 219 | Index diagSize = (std::min)(a.rows(), a.cols()); |
| 220 | RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4; |
| 221 | s = internal::random<RealScalar>(1,s); |
| 222 | Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize); |
| 223 | for(Index k=0; k<diagSize; ++k) |
| 224 | d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s)); |
| 225 | m = Matrix<Scalar,Dynamic,Dynamic>::Random(a.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,a.cols()); |
| 226 | // cancel some coeffs |
| 227 | Index n = internal::random<Index>(0,m.size()-1); |
| 228 | for(Index i=0; i<n; ++i) |
| 229 | m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0); |
| 230 | } |
| 231 | |
| 232 | CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m) )); |
| 233 | CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m) )); |
| 234 | CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m) )); |
| 235 | CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m) )); |
| 236 | } |
| 237 | |
| 238 | template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m) |
| 239 | { |
| 240 | typedef typename MatrixType::Scalar Scalar; |
| 241 | typedef typename MatrixType::Index Index; |
| 242 | Index rows = m.rows(); |
| 243 | Index cols = m.cols(); |
| 244 | |
| 245 | enum { |
| 246 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 247 | ColsAtCompileTime = MatrixType::ColsAtCompileTime |
| 248 | }; |
| 249 | |
| 250 | typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType; |
| 251 | |
| 252 | RhsType rhs(rows); |
| 253 | |
| 254 | JacobiSVD<MatrixType> svd; |
| 255 | VERIFY_RAISES_ASSERT(svd.matrixU()) |
| 256 | VERIFY_RAISES_ASSERT(svd.singularValues()) |
| 257 | VERIFY_RAISES_ASSERT(svd.matrixV()) |
| 258 | VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| 259 | |
| 260 | MatrixType a = MatrixType::Zero(rows, cols); |
| 261 | a.setZero(); |
| 262 | svd.compute(a, 0); |
| 263 | VERIFY_RAISES_ASSERT(svd.matrixU()) |
| 264 | VERIFY_RAISES_ASSERT(svd.matrixV()) |
| 265 | svd.singularValues(); |
| 266 | VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| 267 | |
| 268 | if (ColsAtCompileTime == Dynamic) |
| 269 | { |
| 270 | svd.compute(a, ComputeThinU); |
| 271 | svd.matrixU(); |
| 272 | VERIFY_RAISES_ASSERT(svd.matrixV()) |
| 273 | VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| 274 | |
| 275 | svd.compute(a, ComputeThinV); |
| 276 | svd.matrixV(); |
| 277 | VERIFY_RAISES_ASSERT(svd.matrixU()) |
| 278 | VERIFY_RAISES_ASSERT(svd.solve(rhs)) |
| 279 | |
| 280 | JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr; |
| 281 | VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV)) |
| 282 | VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV)) |
| 283 | VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV)) |
| 284 | } |
| 285 | else |
| 286 | { |
| 287 | VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU)) |
| 288 | VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV)) |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | template<typename MatrixType> |
| 293 | void jacobisvd_method() |
| 294 | { |
| 295 | enum { Size = MatrixType::RowsAtCompileTime }; |
| 296 | typedef typename MatrixType::RealScalar RealScalar; |
| 297 | typedef Matrix<RealScalar, Size, 1> RealVecType; |
| 298 | MatrixType m = MatrixType::Identity(); |
| 299 | VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones()); |
| 300 | VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU()); |
| 301 | VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV()); |
| 302 | VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m); |
| 303 | } |
| 304 | |
| 305 | // work around stupid msvc error when constructing at compile time an expression that involves |
| 306 | // a division by zero, even if the numeric type has floating point |
| 307 | template<typename Scalar> |
| 308 | EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); } |
| 309 | |
| 310 | // workaround aggressive optimization in ICC |
| 311 | template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; } |
| 312 | |
| 313 | template<typename MatrixType> |
| 314 | void jacobisvd_inf_nan() |
| 315 | { |
| 316 | // all this function does is verify we don't iterate infinitely on nan/inf values |
| 317 | |
| 318 | JacobiSVD<MatrixType> svd; |
| 319 | typedef typename MatrixType::Scalar Scalar; |
| 320 | Scalar some_inf = Scalar(1) / zero<Scalar>(); |
| 321 | VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf)); |
| 322 | svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV); |
| 323 | |
| 324 | Scalar nan = std::numeric_limits<Scalar>::quiet_NaN(); |
| 325 | VERIFY(nan != nan); |
| 326 | svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV); |
| 327 | |
| 328 | MatrixType m = MatrixType::Zero(10,10); |
| 329 | m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf; |
| 330 | svd.compute(m, ComputeFullU | ComputeFullV); |
| 331 | |
| 332 | m = MatrixType::Zero(10,10); |
| 333 | m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan; |
| 334 | svd.compute(m, ComputeFullU | ComputeFullV); |
| 335 | |
| 336 | // regression test for bug 791 |
| 337 | m.resize(3,3); |
| 338 | m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5, |
| 339 | 0, -0.5, 0, |
| 340 | nan, 0, 0; |
| 341 | svd.compute(m, ComputeFullU | ComputeFullV); |
| 342 | } |
| 343 | |
| 344 | // Regression test for bug 286: JacobiSVD loops indefinitely with some |
| 345 | // matrices containing denormal numbers. |
| 346 | void jacobisvd_bug286() |
| 347 | { |
| 348 | #if defined __INTEL_COMPILER |
| 349 | // shut up warning #239: floating point underflow |
| 350 | #pragma warning push |
| 351 | #pragma warning disable 239 |
| 352 | #endif |
| 353 | Matrix2d M; |
| 354 | M << -7.90884e-313, -4.94e-324, |
| 355 | 0, 5.60844e-313; |
| 356 | #if defined __INTEL_COMPILER |
| 357 | #pragma warning pop |
| 358 | #endif |
| 359 | JacobiSVD<Matrix2d> svd; |
| 360 | svd.compute(M); // just check we don't loop indefinitely |
| 361 | } |
| 362 | |
| 363 | void jacobisvd_preallocate() |
| 364 | { |
| 365 | Vector3f v(3.f, 2.f, 1.f); |
| 366 | MatrixXf m = v.asDiagonal(); |
| 367 | |
| 368 | internal::set_is_malloc_allowed(false); |
| 369 | VERIFY_RAISES_ASSERT(VectorXf tmp(10);) |
| 370 | JacobiSVD<MatrixXf> svd; |
| 371 | internal::set_is_malloc_allowed(true); |
| 372 | svd.compute(m); |
| 373 | VERIFY_IS_APPROX(svd.singularValues(), v); |
| 374 | |
| 375 | JacobiSVD<MatrixXf> svd2(3,3); |
| 376 | internal::set_is_malloc_allowed(false); |
| 377 | svd2.compute(m); |
| 378 | internal::set_is_malloc_allowed(true); |
| 379 | VERIFY_IS_APPROX(svd2.singularValues(), v); |
| 380 | VERIFY_RAISES_ASSERT(svd2.matrixU()); |
| 381 | VERIFY_RAISES_ASSERT(svd2.matrixV()); |
| 382 | svd2.compute(m, ComputeFullU | ComputeFullV); |
| 383 | VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); |
| 384 | VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); |
| 385 | internal::set_is_malloc_allowed(false); |
| 386 | svd2.compute(m); |
| 387 | internal::set_is_malloc_allowed(true); |
| 388 | |
| 389 | JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV); |
| 390 | internal::set_is_malloc_allowed(false); |
| 391 | svd2.compute(m); |
| 392 | internal::set_is_malloc_allowed(true); |
| 393 | VERIFY_IS_APPROX(svd2.singularValues(), v); |
| 394 | VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); |
| 395 | VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); |
| 396 | internal::set_is_malloc_allowed(false); |
| 397 | svd2.compute(m, ComputeFullU|ComputeFullV); |
| 398 | internal::set_is_malloc_allowed(true); |
| 399 | } |
| 400 | |
| 401 | void test_jacobisvd() |
| 402 | { |
| 403 | CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) )); |
| 404 | CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) )); |
| 405 | CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) )); |
| 406 | CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) )); |
| 407 | |
| 408 | for(int i = 0; i < g_repeat; i++) { |
| 409 | Matrix2cd m; |
| 410 | m << 0, 1, |
| 411 | 0, 1; |
| 412 | CALL_SUBTEST_1(( jacobisvd(m, false) )); |
| 413 | m << 1, 0, |
| 414 | 1, 0; |
| 415 | CALL_SUBTEST_1(( jacobisvd(m, false) )); |
| 416 | |
| 417 | Matrix2d n; |
| 418 | n << 0, 0, |
| 419 | 0, 0; |
| 420 | CALL_SUBTEST_2(( jacobisvd(n, false) )); |
| 421 | n << 0, 0, |
| 422 | 0, 1; |
| 423 | CALL_SUBTEST_2(( jacobisvd(n, false) )); |
| 424 | |
| 425 | CALL_SUBTEST_3(( jacobisvd<Matrix3f>() )); |
| 426 | CALL_SUBTEST_4(( jacobisvd<Matrix4d>() )); |
| 427 | CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() )); |
| 428 | CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) )); |
| 429 | |
| 430 | int r = internal::random<int>(1, 30), |
| 431 | c = internal::random<int>(1, 30); |
| 432 | |
| 433 | TEST_SET_BUT_UNUSED_VARIABLE(r) |
| 434 | TEST_SET_BUT_UNUSED_VARIABLE(c) |
| 435 | |
| 436 | CALL_SUBTEST_10(( jacobisvd<MatrixXd>(MatrixXd(r,c)) )); |
| 437 | CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) )); |
| 438 | CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) )); |
| 439 | (void) r; |
| 440 | (void) c; |
| 441 | |
| 442 | // Test on inf/nan matrix |
| 443 | CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() ); |
| 444 | CALL_SUBTEST_10( jacobisvd_inf_nan<MatrixXd>() ); |
| 445 | } |
| 446 | |
| 447 | CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) )); |
| 448 | CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) )); |
| 449 | |
| 450 | // test matrixbase method |
| 451 | CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() )); |
| 452 | CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() )); |
| 453 | |
| 454 | // Test problem size constructors |
| 455 | CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) ); |
| 456 | |
| 457 | // Check that preallocation avoids subsequent mallocs |
| 458 | CALL_SUBTEST_9( jacobisvd_preallocate() ); |
| 459 | |
| 460 | // Regression check for bug 286 |
| 461 | CALL_SUBTEST_2( jacobisvd_bug286() ); |
| 462 | } |