Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #define EIGEN_NO_STATIC_ASSERT |
| 11 | |
| 12 | #include "main.h" |
| 13 | |
| 14 | template<typename MatrixType> void basicStuff(const MatrixType& m) |
| 15 | { |
| 16 | typedef typename MatrixType::Index Index; |
| 17 | typedef typename MatrixType::Scalar Scalar; |
| 18 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 19 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| 20 | |
| 21 | Index rows = m.rows(); |
| 22 | Index cols = m.cols(); |
| 23 | |
| 24 | // this test relies a lot on Random.h, and there's not much more that we can do |
| 25 | // to test it, hence I consider that we will have tested Random.h |
| 26 | MatrixType m1 = MatrixType::Random(rows, cols), |
| 27 | m2 = MatrixType::Random(rows, cols), |
| 28 | m3(rows, cols), |
| 29 | mzero = MatrixType::Zero(rows, cols), |
| 30 | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); |
| 31 | VectorType v1 = VectorType::Random(rows), |
| 32 | vzero = VectorType::Zero(rows); |
| 33 | SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows); |
| 34 | |
| 35 | Scalar x = 0; |
| 36 | while(x == Scalar(0)) x = internal::random<Scalar>(); |
| 37 | |
| 38 | Index r = internal::random<Index>(0, rows-1), |
| 39 | c = internal::random<Index>(0, cols-1); |
| 40 | |
| 41 | m1.coeffRef(r,c) = x; |
| 42 | VERIFY_IS_APPROX(x, m1.coeff(r,c)); |
| 43 | m1(r,c) = x; |
| 44 | VERIFY_IS_APPROX(x, m1(r,c)); |
| 45 | v1.coeffRef(r) = x; |
| 46 | VERIFY_IS_APPROX(x, v1.coeff(r)); |
| 47 | v1(r) = x; |
| 48 | VERIFY_IS_APPROX(x, v1(r)); |
| 49 | v1[r] = x; |
| 50 | VERIFY_IS_APPROX(x, v1[r]); |
| 51 | |
| 52 | VERIFY_IS_APPROX( v1, v1); |
| 53 | VERIFY_IS_NOT_APPROX( v1, 2*v1); |
| 54 | VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); |
| 55 | VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm()); |
| 56 | VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); |
| 57 | VERIFY_IS_APPROX( vzero, v1-v1); |
| 58 | VERIFY_IS_APPROX( m1, m1); |
| 59 | VERIFY_IS_NOT_APPROX( m1, 2*m1); |
| 60 | VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); |
| 61 | VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); |
| 62 | VERIFY_IS_APPROX( mzero, m1-m1); |
| 63 | |
| 64 | // always test operator() on each read-only expression class, |
| 65 | // in order to check const-qualifiers. |
| 66 | // indeed, if an expression class (here Zero) is meant to be read-only, |
| 67 | // hence has no _write() method, the corresponding MatrixBase method (here zero()) |
| 68 | // should return a const-qualified object so that it is the const-qualified |
| 69 | // operator() that gets called, which in turn calls _read(). |
| 70 | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1)); |
| 71 | |
| 72 | // now test copying a row-vector into a (column-)vector and conversely. |
| 73 | square.col(r) = square.row(r).eval(); |
| 74 | Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); |
| 75 | Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); |
| 76 | rv = square.row(r); |
| 77 | cv = square.col(r); |
| 78 | |
| 79 | VERIFY_IS_APPROX(rv, cv.transpose()); |
| 80 | |
| 81 | if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) |
| 82 | { |
| 83 | VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); |
| 84 | } |
| 85 | |
| 86 | if(cols!=1 && rows!=1) |
| 87 | { |
| 88 | VERIFY_RAISES_ASSERT(m1[0]); |
| 89 | VERIFY_RAISES_ASSERT((m1+m1)[0]); |
| 90 | } |
| 91 | |
| 92 | VERIFY_IS_APPROX(m3 = m1,m1); |
| 93 | MatrixType m4; |
| 94 | VERIFY_IS_APPROX(m4 = m1,m1); |
| 95 | |
| 96 | m3.real() = m1.real(); |
| 97 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real()); |
| 98 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real()); |
| 99 | |
| 100 | // check == / != operators |
| 101 | VERIFY(m1==m1); |
| 102 | VERIFY(m1!=m2); |
| 103 | VERIFY(!(m1==m2)); |
| 104 | VERIFY(!(m1!=m1)); |
| 105 | m1 = m2; |
| 106 | VERIFY(m1==m2); |
| 107 | VERIFY(!(m1!=m2)); |
| 108 | |
| 109 | // check automatic transposition |
| 110 | sm2.setZero(); |
| 111 | for(typename MatrixType::Index i=0;i<rows;++i) |
| 112 | sm2.col(i) = sm1.row(i); |
| 113 | VERIFY_IS_APPROX(sm2,sm1.transpose()); |
| 114 | |
| 115 | sm2.setZero(); |
| 116 | for(typename MatrixType::Index i=0;i<rows;++i) |
| 117 | sm2.col(i).noalias() = sm1.row(i); |
| 118 | VERIFY_IS_APPROX(sm2,sm1.transpose()); |
| 119 | |
| 120 | sm2.setZero(); |
| 121 | for(typename MatrixType::Index i=0;i<rows;++i) |
| 122 | sm2.col(i).noalias() += sm1.row(i); |
| 123 | VERIFY_IS_APPROX(sm2,sm1.transpose()); |
| 124 | |
| 125 | sm2.setZero(); |
| 126 | for(typename MatrixType::Index i=0;i<rows;++i) |
| 127 | sm2.col(i).noalias() -= sm1.row(i); |
| 128 | VERIFY_IS_APPROX(sm2,-sm1.transpose()); |
| 129 | } |
| 130 | |
| 131 | template<typename MatrixType> void basicStuffComplex(const MatrixType& m) |
| 132 | { |
| 133 | typedef typename MatrixType::Index Index; |
| 134 | typedef typename MatrixType::Scalar Scalar; |
| 135 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 136 | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; |
| 137 | |
| 138 | Index rows = m.rows(); |
| 139 | Index cols = m.cols(); |
| 140 | |
| 141 | Scalar s1 = internal::random<Scalar>(), |
| 142 | s2 = internal::random<Scalar>(); |
| 143 | |
| 144 | VERIFY(numext::real(s1)==numext::real_ref(s1)); |
| 145 | VERIFY(numext::imag(s1)==numext::imag_ref(s1)); |
| 146 | numext::real_ref(s1) = numext::real(s2); |
| 147 | numext::imag_ref(s1) = numext::imag(s2); |
| 148 | VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon())); |
| 149 | // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed. |
| 150 | |
| 151 | RealMatrixType rm1 = RealMatrixType::Random(rows,cols), |
| 152 | rm2 = RealMatrixType::Random(rows,cols); |
| 153 | MatrixType cm(rows,cols); |
| 154 | cm.real() = rm1; |
| 155 | cm.imag() = rm2; |
| 156 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); |
| 157 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); |
| 158 | rm1.setZero(); |
| 159 | rm2.setZero(); |
| 160 | rm1 = cm.real(); |
| 161 | rm2 = cm.imag(); |
| 162 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1); |
| 163 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2); |
| 164 | cm.real().setZero(); |
| 165 | VERIFY(static_cast<const MatrixType&>(cm).real().isZero()); |
| 166 | VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero()); |
| 167 | } |
| 168 | |
| 169 | #ifdef EIGEN_TEST_PART_2 |
| 170 | void casting() |
| 171 | { |
| 172 | Matrix4f m = Matrix4f::Random(), m2; |
| 173 | Matrix4d n = m.cast<double>(); |
| 174 | VERIFY(m.isApprox(n.cast<float>())); |
| 175 | m2 = m.cast<float>(); // check the specialization when NewType == Type |
| 176 | VERIFY(m.isApprox(m2)); |
| 177 | } |
| 178 | #endif |
| 179 | |
| 180 | template <typename Scalar> |
| 181 | void fixedSizeMatrixConstruction() |
| 182 | { |
| 183 | const Scalar raw[3] = {1,2,3}; |
| 184 | Matrix<Scalar,3,1> m(raw); |
| 185 | Array<Scalar,3,1> a(raw); |
| 186 | VERIFY(m(0) == 1); |
| 187 | VERIFY(m(1) == 2); |
| 188 | VERIFY(m(2) == 3); |
| 189 | VERIFY(a(0) == 1); |
| 190 | VERIFY(a(1) == 2); |
| 191 | VERIFY(a(2) == 3); |
| 192 | } |
| 193 | |
| 194 | void test_basicstuff() |
| 195 | { |
| 196 | for(int i = 0; i < g_repeat; i++) { |
| 197 | CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); |
| 198 | CALL_SUBTEST_2( basicStuff(Matrix4d()) ); |
| 199 | CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 200 | CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 201 | CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 202 | CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); |
| 203 | CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 204 | |
| 205 | CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 206 | CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| 207 | } |
| 208 | |
| 209 | CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>()); |
| 210 | CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); |
| 211 | CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>()); |
| 212 | |
| 213 | CALL_SUBTEST_2(casting()); |
| 214 | } |