Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "sparse.h" |
| 11 | |
| 12 | template<typename T> |
| 13 | typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==RowMajorBit, typename T::RowXpr>::type |
| 14 | innervec(T& A, Index i) |
| 15 | { |
| 16 | return A.row(i); |
| 17 | } |
| 18 | |
| 19 | template<typename T> |
| 20 | typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==0, typename T::ColXpr>::type |
| 21 | innervec(T& A, Index i) |
| 22 | { |
| 23 | return A.col(i); |
| 24 | } |
| 25 | |
| 26 | template<typename SparseMatrixType> void sparse_block(const SparseMatrixType& ref) |
| 27 | { |
| 28 | const Index rows = ref.rows(); |
| 29 | const Index cols = ref.cols(); |
| 30 | const Index inner = ref.innerSize(); |
| 31 | const Index outer = ref.outerSize(); |
| 32 | |
| 33 | typedef typename SparseMatrixType::Scalar Scalar; |
| 34 | typedef typename SparseMatrixType::StorageIndex StorageIndex; |
| 35 | |
| 36 | double density = (std::max)(8./(rows*cols), 0.01); |
| 37 | typedef Matrix<Scalar,Dynamic,Dynamic,SparseMatrixType::IsRowMajor?RowMajor:ColMajor> DenseMatrix; |
| 38 | typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| 39 | typedef Matrix<Scalar,1,Dynamic> RowDenseVector; |
| 40 | typedef SparseVector<Scalar> SparseVectorType; |
| 41 | |
| 42 | Scalar s1 = internal::random<Scalar>(); |
| 43 | { |
| 44 | SparseMatrixType m(rows, cols); |
| 45 | DenseMatrix refMat = DenseMatrix::Zero(rows, cols); |
| 46 | initSparse<Scalar>(density, refMat, m); |
| 47 | |
| 48 | VERIFY_IS_APPROX(m, refMat); |
| 49 | |
| 50 | // test InnerIterators and Block expressions |
| 51 | for (int t=0; t<10; ++t) |
| 52 | { |
| 53 | Index j = internal::random<Index>(0,cols-2); |
| 54 | Index i = internal::random<Index>(0,rows-2); |
| 55 | Index w = internal::random<Index>(1,cols-j); |
| 56 | Index h = internal::random<Index>(1,rows-i); |
| 57 | |
| 58 | VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); |
| 59 | for(Index c=0; c<w; c++) |
| 60 | { |
| 61 | VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); |
| 62 | for(Index r=0; r<h; r++) |
| 63 | { |
| 64 | VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); |
| 65 | VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); |
| 66 | } |
| 67 | } |
| 68 | for(Index r=0; r<h; r++) |
| 69 | { |
| 70 | VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); |
| 71 | for(Index c=0; c<w; c++) |
| 72 | { |
| 73 | VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); |
| 74 | VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w)); |
| 79 | VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h)); |
| 80 | for(Index r=0; r<h; r++) |
| 81 | { |
| 82 | VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r)); |
| 83 | VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r)); |
| 84 | for(Index c=0; c<w; c++) |
| 85 | { |
| 86 | VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); |
| 87 | VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); |
| 88 | |
| 89 | VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c)); |
| 90 | VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); |
| 91 | if(m.middleCols(j,w).coeff(r,c) != Scalar(0)) |
| 92 | { |
| 93 | VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c)); |
| 94 | } |
| 95 | if(m.middleRows(i,h).coeff(r,c) != Scalar(0)) |
| 96 | { |
| 97 | VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); |
| 98 | } |
| 99 | } |
| 100 | } |
| 101 | for(Index c=0; c<w; c++) |
| 102 | { |
| 103 | VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c)); |
| 104 | VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c)); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | for(Index c=0; c<cols; c++) |
| 109 | { |
| 110 | VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); |
| 111 | VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); |
| 112 | } |
| 113 | |
| 114 | for(Index r=0; r<rows; r++) |
| 115 | { |
| 116 | VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); |
| 117 | VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | // test innerVector() |
| 122 | { |
| 123 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| 124 | SparseMatrixType m2(rows, cols); |
| 125 | initSparse<Scalar>(density, refMat2, m2); |
| 126 | Index j0 = internal::random<Index>(0,outer-1); |
| 127 | Index j1 = internal::random<Index>(0,outer-1); |
| 128 | Index r0 = internal::random<Index>(0,rows-1); |
| 129 | Index c0 = internal::random<Index>(0,cols-1); |
| 130 | |
| 131 | VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0)); |
| 132 | VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1)); |
| 133 | |
| 134 | m2.innerVector(j0) *= Scalar(2); |
| 135 | innervec(refMat2,j0) *= Scalar(2); |
| 136 | VERIFY_IS_APPROX(m2, refMat2); |
| 137 | |
| 138 | m2.row(r0) *= Scalar(3); |
| 139 | refMat2.row(r0) *= Scalar(3); |
| 140 | VERIFY_IS_APPROX(m2, refMat2); |
| 141 | |
| 142 | m2.col(c0) *= Scalar(4); |
| 143 | refMat2.col(c0) *= Scalar(4); |
| 144 | VERIFY_IS_APPROX(m2, refMat2); |
| 145 | |
| 146 | m2.row(r0) /= Scalar(3); |
| 147 | refMat2.row(r0) /= Scalar(3); |
| 148 | VERIFY_IS_APPROX(m2, refMat2); |
| 149 | |
| 150 | m2.col(c0) /= Scalar(4); |
| 151 | refMat2.col(c0) /= Scalar(4); |
| 152 | VERIFY_IS_APPROX(m2, refMat2); |
| 153 | |
| 154 | SparseVectorType v1; |
| 155 | VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4); |
| 156 | VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4); |
| 157 | |
| 158 | SparseMatrixType m3(rows,cols); |
| 159 | m3.reserve(VectorXi::Constant(outer,int(inner/2))); |
| 160 | for(Index j=0; j<outer; ++j) |
| 161 | for(Index k=0; k<(std::min)(j,inner); ++k) |
| 162 | m3.insertByOuterInner(j,k) = internal::convert_index<StorageIndex>(k+1); |
| 163 | for(Index j=0; j<(std::min)(outer, inner); ++j) |
| 164 | { |
| 165 | VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); |
| 166 | if(j>0) |
| 167 | VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); |
| 168 | } |
| 169 | m3.makeCompressed(); |
| 170 | for(Index j=0; j<(std::min)(outer, inner); ++j) |
| 171 | { |
| 172 | VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); |
| 173 | if(j>0) |
| 174 | VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); |
| 175 | } |
| 176 | |
| 177 | VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros()); |
| 178 | |
| 179 | // m2.innerVector(j0) = 2*m2.innerVector(j1); |
| 180 | // refMat2.col(j0) = 2*refMat2.col(j1); |
| 181 | // VERIFY_IS_APPROX(m2, refMat2); |
| 182 | } |
| 183 | |
| 184 | // test innerVectors() |
| 185 | { |
| 186 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| 187 | SparseMatrixType m2(rows, cols); |
| 188 | initSparse<Scalar>(density, refMat2, m2); |
| 189 | if(internal::random<float>(0,1)>0.5f) m2.makeCompressed(); |
| 190 | Index j0 = internal::random<Index>(0,outer-2); |
| 191 | Index j1 = internal::random<Index>(0,outer-2); |
| 192 | Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1)); |
| 193 | if(SparseMatrixType::IsRowMajor) |
| 194 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); |
| 195 | else |
| 196 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); |
| 197 | if(SparseMatrixType::IsRowMajor) |
| 198 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), |
| 199 | refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); |
| 200 | else |
| 201 | VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), |
| 202 | refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); |
| 203 | |
| 204 | VERIFY_IS_APPROX(m2, refMat2); |
| 205 | |
| 206 | VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros()); |
| 207 | |
| 208 | m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); |
| 209 | if(SparseMatrixType::IsRowMajor) |
| 210 | refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); |
| 211 | else |
| 212 | refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); |
| 213 | |
| 214 | VERIFY_IS_APPROX(m2, refMat2); |
| 215 | } |
| 216 | |
| 217 | // test generic blocks |
| 218 | { |
| 219 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); |
| 220 | SparseMatrixType m2(rows, cols); |
| 221 | initSparse<Scalar>(density, refMat2, m2); |
| 222 | Index j0 = internal::random<Index>(0,outer-2); |
| 223 | Index j1 = internal::random<Index>(0,outer-2); |
| 224 | Index n0 = internal::random<Index>(1,outer-(std::max)(j0,j1)); |
| 225 | if(SparseMatrixType::IsRowMajor) |
| 226 | VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); |
| 227 | else |
| 228 | VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); |
| 229 | |
| 230 | if(SparseMatrixType::IsRowMajor) |
| 231 | VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), |
| 232 | refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); |
| 233 | else |
| 234 | VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), |
| 235 | refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); |
| 236 | |
| 237 | Index i = internal::random<Index>(0,m2.outerSize()-1); |
| 238 | if(SparseMatrixType::IsRowMajor) { |
| 239 | m2.innerVector(i) = m2.innerVector(i) * s1; |
| 240 | refMat2.row(i) = refMat2.row(i) * s1; |
| 241 | VERIFY_IS_APPROX(m2,refMat2); |
| 242 | } else { |
| 243 | m2.innerVector(i) = m2.innerVector(i) * s1; |
| 244 | refMat2.col(i) = refMat2.col(i) * s1; |
| 245 | VERIFY_IS_APPROX(m2,refMat2); |
| 246 | } |
| 247 | |
| 248 | Index r0 = internal::random<Index>(0,rows-2); |
| 249 | Index c0 = internal::random<Index>(0,cols-2); |
| 250 | Index r1 = internal::random<Index>(1,rows-r0); |
| 251 | Index c1 = internal::random<Index>(1,cols-c0); |
| 252 | |
| 253 | VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0)); |
| 254 | VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0)); |
| 255 | |
| 256 | VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0)); |
| 257 | VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0)); |
| 258 | |
| 259 | VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1)); |
| 260 | VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1)); |
| 261 | |
| 262 | if(m2.nonZeros()>0) |
| 263 | { |
| 264 | VERIFY_IS_APPROX(m2, refMat2); |
| 265 | SparseMatrixType m3(rows, cols); |
| 266 | DenseMatrix refMat3(rows, cols); refMat3.setZero(); |
| 267 | Index n = internal::random<Index>(1,10); |
| 268 | for(Index k=0; k<n; ++k) |
| 269 | { |
| 270 | Index o1 = internal::random<Index>(0,outer-1); |
| 271 | Index o2 = internal::random<Index>(0,outer-1); |
| 272 | if(SparseMatrixType::IsRowMajor) |
| 273 | { |
| 274 | m3.innerVector(o1) = m2.row(o2); |
| 275 | refMat3.row(o1) = refMat2.row(o2); |
| 276 | } |
| 277 | else |
| 278 | { |
| 279 | m3.innerVector(o1) = m2.col(o2); |
| 280 | refMat3.col(o1) = refMat2.col(o2); |
| 281 | } |
| 282 | if(internal::random<bool>()) |
| 283 | m3.makeCompressed(); |
| 284 | } |
| 285 | if(m3.nonZeros()>0) |
| 286 | VERIFY_IS_APPROX(m3, refMat3); |
| 287 | } |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | void test_sparse_block() |
| 292 | { |
| 293 | for(int i = 0; i < g_repeat; i++) { |
| 294 | int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200); |
| 295 | if(Eigen::internal::random<int>(0,4) == 0) { |
| 296 | r = c; // check square matrices in 25% of tries |
| 297 | } |
| 298 | EIGEN_UNUSED_VARIABLE(r+c); |
| 299 | CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(1, 1)) )); |
| 300 | CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(8, 8)) )); |
| 301 | CALL_SUBTEST_1(( sparse_block(SparseMatrix<double>(r, c)) )); |
| 302 | CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)) )); |
| 303 | CALL_SUBTEST_2(( sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)) )); |
| 304 | |
| 305 | CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,ColMajor,long int>(r, c)) )); |
| 306 | CALL_SUBTEST_3(( sparse_block(SparseMatrix<double,RowMajor,long int>(r, c)) )); |
| 307 | |
| 308 | r = Eigen::internal::random<int>(1,100); |
| 309 | c = Eigen::internal::random<int>(1,100); |
| 310 | if(Eigen::internal::random<int>(0,4) == 0) { |
| 311 | r = c; // check square matrices in 25% of tries |
| 312 | } |
| 313 | |
| 314 | CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) )); |
| 315 | CALL_SUBTEST_4(( sparse_block(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) )); |
| 316 | } |
| 317 | } |