Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 4 | // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 12 | template<typename T> EIGEN_DONT_INLINE T copy(const T& x) |
| 13 | { |
| 14 | return x; |
| 15 | } |
| 16 | |
| 17 | template<typename MatrixType> void stable_norm(const MatrixType& m) |
| 18 | { |
| 19 | /* this test covers the following files: |
| 20 | StableNorm.h |
| 21 | */ |
| 22 | using std::sqrt; |
| 23 | using std::abs; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 24 | typedef typename MatrixType::Scalar Scalar; |
| 25 | typedef typename NumTraits<Scalar>::Real RealScalar; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 26 | |
| 27 | bool complex_real_product_ok = true; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 28 | |
| 29 | // Check the basic machine-dependent constants. |
| 30 | { |
| 31 | int ibeta, it, iemin, iemax; |
| 32 | |
| 33 | ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers |
| 34 | it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa |
| 35 | iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent |
| 36 | iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent |
| 37 | |
| 38 | VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) |
| 39 | && "the stable norm algorithm cannot be guaranteed on this computer"); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 40 | |
| 41 | Scalar inf = std::numeric_limits<RealScalar>::infinity(); |
| 42 | if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) ) |
| 43 | { |
| 44 | complex_real_product_ok = false; |
| 45 | static bool first = true; |
| 46 | if(first) |
| 47 | std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl; |
| 48 | first = false; |
| 49 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 50 | } |
| 51 | |
| 52 | |
| 53 | Index rows = m.rows(); |
| 54 | Index cols = m.cols(); |
| 55 | |
| 56 | // get a non-zero random factor |
| 57 | Scalar factor = internal::random<Scalar>(); |
| 58 | while(numext::abs2(factor)<RealScalar(1e-4)) |
| 59 | factor = internal::random<Scalar>(); |
| 60 | Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); |
| 61 | |
| 62 | factor = internal::random<Scalar>(); |
| 63 | while(numext::abs2(factor)<RealScalar(1e-4)) |
| 64 | factor = internal::random<Scalar>(); |
| 65 | Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); |
| 66 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 67 | Scalar one(1); |
| 68 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 69 | MatrixType vzero = MatrixType::Zero(rows, cols), |
| 70 | vrand = MatrixType::Random(rows, cols), |
| 71 | vbig(rows, cols), |
| 72 | vsmall(rows,cols); |
| 73 | |
| 74 | vbig.fill(big); |
| 75 | vsmall.fill(small); |
| 76 | |
| 77 | VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); |
| 78 | VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); |
| 79 | VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); |
| 80 | VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); |
| 81 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 82 | // test with expressions as input |
| 83 | VERIFY_IS_APPROX((one*vrand).stableNorm(), vrand.norm()); |
| 84 | VERIFY_IS_APPROX((one*vrand).blueNorm(), vrand.norm()); |
| 85 | VERIFY_IS_APPROX((one*vrand).hypotNorm(), vrand.norm()); |
| 86 | VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).stableNorm(), vrand.norm()); |
| 87 | VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).blueNorm(), vrand.norm()); |
| 88 | VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).hypotNorm(), vrand.norm()); |
| 89 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 90 | RealScalar size = static_cast<RealScalar>(m.size()); |
| 91 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 92 | // test numext::isfinite |
| 93 | VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity())); |
| 94 | VERIFY(!(numext::isfinite)(sqrt(-abs(big)))); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 95 | |
| 96 | // test overflow |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 97 | VERIFY((numext::isfinite)(sqrt(size)*abs(big))); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 98 | VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail |
| 99 | VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big)); |
| 100 | VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size)*abs(big)); |
| 101 | VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size)*abs(big)); |
| 102 | |
| 103 | // test underflow |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 104 | VERIFY((numext::isfinite)(sqrt(size)*abs(small))); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 105 | VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size)*small)); // here the default norm must fail |
| 106 | VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small)); |
| 107 | VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size)*abs(small)); |
| 108 | VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size)*abs(small)); |
| 109 | |
| 110 | // Test compilation of cwise() version |
| 111 | VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); |
| 112 | VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); |
| 113 | VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); |
| 114 | VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); |
| 115 | VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); |
| 116 | VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 117 | |
| 118 | // test NaN, +inf, -inf |
| 119 | MatrixType v; |
| 120 | Index i = internal::random<Index>(0,rows-1); |
| 121 | Index j = internal::random<Index>(0,cols-1); |
| 122 | |
| 123 | // NaN |
| 124 | { |
| 125 | v = vrand; |
| 126 | v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN(); |
| 127 | VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm())); |
| 128 | VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm())); |
| 129 | VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm())); |
| 130 | VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm())); |
| 131 | VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm())); |
| 132 | } |
| 133 | |
| 134 | // +inf |
| 135 | { |
| 136 | v = vrand; |
| 137 | v(i,j) = std::numeric_limits<RealScalar>::infinity(); |
| 138 | VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm())); |
| 139 | VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm())); |
| 140 | VERIFY(!(numext::isfinite)(v.stableNorm())); |
| 141 | if(complex_real_product_ok){ |
| 142 | VERIFY(isPlusInf(v.stableNorm())); |
| 143 | } |
| 144 | VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm())); |
| 145 | VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm())); |
| 146 | } |
| 147 | |
| 148 | // -inf |
| 149 | { |
| 150 | v = vrand; |
| 151 | v(i,j) = -std::numeric_limits<RealScalar>::infinity(); |
| 152 | VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm())); |
| 153 | VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm())); |
| 154 | VERIFY(!(numext::isfinite)(v.stableNorm())); |
| 155 | if(complex_real_product_ok) { |
| 156 | VERIFY(isPlusInf(v.stableNorm())); |
| 157 | } |
| 158 | VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm())); |
| 159 | VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm())); |
| 160 | } |
| 161 | |
| 162 | // mix |
| 163 | { |
| 164 | Index i2 = internal::random<Index>(0,rows-1); |
| 165 | Index j2 = internal::random<Index>(0,cols-1); |
| 166 | v = vrand; |
| 167 | v(i,j) = -std::numeric_limits<RealScalar>::infinity(); |
| 168 | v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN(); |
| 169 | VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm())); |
| 170 | VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm())); |
| 171 | VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm())); |
| 172 | VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm())); |
| 173 | VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm())); |
| 174 | } |
| 175 | |
| 176 | // stableNormalize[d] |
| 177 | { |
| 178 | VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized()); |
| 179 | MatrixType vcopy(vrand); |
| 180 | vcopy.stableNormalize(); |
| 181 | VERIFY_IS_APPROX(vcopy, vrand.normalized()); |
| 182 | VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1)); |
| 183 | VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1)); |
| 184 | VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1)); |
| 185 | VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1)); |
| 186 | RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); |
| 187 | VERIFY_IS_APPROX(vbig/big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval()/big_scaling); |
| 188 | VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized()); |
| 189 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 190 | } |
| 191 | |
| 192 | void test_stable_norm() |
| 193 | { |
| 194 | for(int i = 0; i < g_repeat; i++) { |
| 195 | CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); |
| 196 | CALL_SUBTEST_2( stable_norm(Vector4d()) ); |
| 197 | CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); |
| 198 | CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); |
| 199 | CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); |
| 200 | } |
| 201 | } |