| #ifndef MOTORS_MOTOR_H_ |
| #define MOTORS_MOTOR_H_ |
| |
| #include <limits.h> |
| |
| #include <array> |
| |
| #include "motors/algorithms.h" |
| #include "motors/core/kinetis.h" |
| #include "motors/peripheral/adc.h" |
| #include "motors/peripheral/configuration.h" |
| #include "motors/util.h" |
| #include "motors/usb/cdc.h" |
| #include "motors/core/time.h" |
| |
| namespace frc971 { |
| namespace salsa { |
| |
| class MotorControls { |
| public: |
| MotorControls() = default; |
| virtual ~MotorControls() = default; |
| |
| MotorControls(const MotorControls &) = delete; |
| void operator=(const MotorControls &) = delete; |
| |
| // Scales a current reading from ADC units to amps. |
| // |
| // Note that this doesn't apply any offset. The common offset will be |
| // automatically removed as part of the balancing process. |
| virtual float scale_current_reading(float reading) const = 0; |
| |
| virtual int mechanical_counts_per_revolution() const = 0; |
| virtual int electrical_counts_per_revolution() const = 0; |
| |
| // raw_currents are in amps for each phase. |
| // theta is in electrical counts, which will be less than |
| // counts_per_revolution(). |
| virtual ::std::array<uint32_t, 3> DoIteration( |
| const float raw_currents[3], uint32_t theta, |
| const float command_current) = 0; |
| |
| virtual int16_t Debug(uint32_t theta) = 0; |
| |
| virtual float estimated_velocity() const = 0; |
| }; |
| |
| // Controls a single motor. |
| class Motor final { |
| public: |
| // pwm_ftm is used to drive the PWM outputs. |
| // encoder_ftm is used for reading the encoder. |
| Motor(BigFTM *pwm_ftm, LittleFTM *encoder_ftm, MotorControls *controls, |
| const ::std::array<volatile uint32_t *, 3> &output_registers); |
| |
| Motor(const Motor &) = delete; |
| void operator=(const Motor &) = delete; |
| |
| void set_debug_tty(teensy::AcmTty *debug_tty) { debug_tty_ = debug_tty; } |
| void set_deadtime_compensation(int deadtime_compensation) { |
| deadtime_compensation_ = deadtime_compensation; |
| } |
| void set_switching_divisor(int switching_divisor) { |
| switching_divisor_ = switching_divisor; |
| } |
| void set_encoder_offset(int encoder_offset) { |
| encoder_offset_ = encoder_offset; |
| // Add mechanical_counts_per_revolution to the offset so that when we mod |
| // below, we are guaranteed to be > 0 regardless of the encoder multiplier. |
| // % isn't well-defined with negative numbers. |
| while (encoder_offset_ < controls_->mechanical_counts_per_revolution()) { |
| encoder_offset_ += controls_->mechanical_counts_per_revolution(); |
| } |
| } |
| void set_encoder_multiplier(int encoder_multiplier) { |
| encoder_multiplier_ = encoder_multiplier; |
| } |
| |
| int encoder() { |
| return encoder_multiplier_ * encoder_ftm_->CNT; |
| } |
| uint32_t wrapped_encoder() { |
| return (encoder() + encoder_offset_) % |
| controls_->mechanical_counts_per_revolution(); |
| } |
| |
| // Sets up everything but doesn't actually start the timers. |
| // |
| // This assumes the global time base configuration happens outside so the |
| // timers for both motors (if applicable) are synced up. |
| void Init(); |
| |
| // Starts the timers. |
| // |
| // If the global time base is in use, it must be activated after this. |
| void Start(); |
| |
| void HandleInterrupt(const BalancedReadings &readings, |
| uint32_t captured_wrapped_encoder); |
| |
| void SetGoalCurrent(float goal_current) { |
| DisableInterrupts disable_interrupts; |
| goal_current_ = goal_current; |
| last_current_set_time_ = micros(); |
| } |
| |
| private: |
| // Represents the ADC reading which is closest to an edge. |
| struct CloseAdcReading { |
| // Adds a new reading to the readings to balance or pushes the previous |
| // closest one there and saves off this one. |
| // |
| // Returns true if it saves off the new reading. |
| bool MaybeUse(int new_distance, const MediumAdcReadings &adc_readings, |
| int phase, int sample, ReadingsToBalance *to_balance) { |
| if (new_distance < distance) { |
| if (distance != INT_MAX) { |
| to_balance->Add(index, value); |
| } |
| distance = new_distance; |
| value = adc_readings.motor_currents[phase][sample]; |
| index = phase; |
| return true; |
| } |
| return false; |
| } |
| |
| int distance = INT_MAX; |
| int32_t value = 0; |
| int index = 0; |
| }; |
| |
| inline int counts_per_cycle() const { |
| return BUS_CLOCK_FREQUENCY / SWITCHING_FREQUENCY / switching_divisor_; |
| } |
| |
| uint32_t CalculateOnTime(uint32_t width) const; |
| uint32_t CalculateOffTime(uint32_t width) const; |
| |
| bool flip_time_offset_ = false; |
| int deadtime_compensation_ = 0; |
| |
| BigFTM *const pwm_ftm_; |
| LittleFTM *const encoder_ftm_; |
| MotorControls *const controls_; |
| const ::std::array<volatile uint32_t *, 3> output_registers_; |
| |
| float goal_current_ = 0; |
| uint32_t last_current_set_time_ = 0; |
| int switching_divisor_ = 1; |
| int encoder_offset_ = 0; |
| int encoder_multiplier_ = 1; |
| |
| teensy::AcmTty *debug_tty_ = nullptr; |
| }; |
| |
| } // namespace salsa |
| } // namespace frc971 |
| |
| #endif // MOTORS_MOTOR_H_ |