Squashed 'third_party/eigen/' changes from 61d72f6..cf794d3


Change-Id: I9b814151b01f49af6337a8605d0c42a3a1ed4c72
git-subtree-dir: third_party/eigen
git-subtree-split: cf794d3b741a6278df169e58461f8529f43bce5d
diff --git a/test/sparse_product.cpp b/test/sparse_product.cpp
index a2ea9d5..7f77bb7 100644
--- a/test/sparse_product.cpp
+++ b/test/sparse_product.cpp
@@ -7,37 +7,35 @@
 // Public License v. 2.0. If a copy of the MPL was not distributed
 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 
+#if defined(_MSC_VER) && (_MSC_VER==1800)
+// This unit test takes forever to compile in Release mode with MSVC 2013,
+// multiple hours. So let's switch off optimization for this one.
+#pragma optimize("",off)
+#endif
+
+static long int nb_temporaries;
+
+inline void on_temporary_creation() {
+  // here's a great place to set a breakpoint when debugging failures in this test!
+  nb_temporaries++;
+}
+
+#define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN { on_temporary_creation(); }
+
 #include "sparse.h"
 
-template<typename SparseMatrixType, typename DenseMatrix, bool IsRowMajor=SparseMatrixType::IsRowMajor> struct test_outer;
-
-template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,false> {
-  static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) {
-    typedef typename SparseMatrixType::Index Index;
-    Index c  = internal::random<Index>(0,m2.cols()-1);
-    Index c1 = internal::random<Index>(0,m2.cols()-1);
-    VERIFY_IS_APPROX(m4=m2.col(c)*refMat2.col(c1).transpose(), refMat4=refMat2.col(c)*refMat2.col(c1).transpose());
-    VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.col(c).transpose(), refMat4=refMat2.col(c1)*refMat2.col(c).transpose());
+#define VERIFY_EVALUATION_COUNT(XPR,N) {\
+    nb_temporaries = 0; \
+    CALL_SUBTEST( XPR ); \
+    if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
+    VERIFY( (#XPR) && nb_temporaries==N ); \
   }
-};
 
-template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,true> {
-  static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) {
-    typedef typename SparseMatrixType::Index Index;
-    Index r  = internal::random<Index>(0,m2.rows()-1);
-    Index c1 = internal::random<Index>(0,m2.cols()-1);
-    VERIFY_IS_APPROX(m4=m2.row(r).transpose()*refMat2.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*refMat2.col(c1).transpose());
-    VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.row(r), refMat4=refMat2.col(c1)*refMat2.row(r));
-  }
-};
 
-// (m2,m4,refMat2,refMat4,dv1);
-//     VERIFY_IS_APPROX(m4=m2.innerVector(c)*dv1.transpose(), refMat4=refMat2.colVector(c)*dv1.transpose());
-//     VERIFY_IS_APPROX(m4=dv1*mcm.col(c).transpose(), refMat4=dv1*refMat2.col(c).transpose());
 
 template<typename SparseMatrixType> void sparse_product()
 {
-  typedef typename SparseMatrixType::Index Index;
+  typedef typename SparseMatrixType::StorageIndex StorageIndex;
   Index n = 100;
   const Index rows  = internal::random<Index>(1,n);
   const Index cols  = internal::random<Index>(1,n);
@@ -45,12 +43,12 @@
   typedef typename SparseMatrixType::Scalar Scalar;
   enum { Flags = SparseMatrixType::Flags };
 
-  double density = (std::max)(8./(rows*cols), 0.1);
+  double density = (std::max)(8./(rows*cols), 0.2);
   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
   typedef Matrix<Scalar,Dynamic,1> DenseVector;
   typedef Matrix<Scalar,1,Dynamic> RowDenseVector;
-  typedef SparseVector<Scalar,0,Index> ColSpVector;
-  typedef SparseVector<Scalar,RowMajor,Index> RowSpVector;
+  typedef SparseVector<Scalar,0,StorageIndex> ColSpVector;
+  typedef SparseVector<Scalar,RowMajor,StorageIndex> RowSpVector;
 
   Scalar s1 = internal::random<Scalar>();
   Scalar s2 = internal::random<Scalar>();
@@ -93,33 +91,124 @@
     VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1);
     VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
     VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1);
+    VERIFY_IS_APPROX(m4 = (m2+m2)*m3, refMat4 = (refMat2+refMat2)*refMat3);
+    VERIFY_IS_APPROX(m4 = m2*m3.leftCols(cols/2), refMat4 = refMat2*refMat3.leftCols(cols/2));
+    VERIFY_IS_APPROX(m4 = m2*(m3+m3).leftCols(cols/2), refMat4 = refMat2*(refMat3+refMat3).leftCols(cols/2));
 
     VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3);
     VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3);
     VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose());
     VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose());
 
+    // make sure the right product implementation is called:
+    if((!SparseMatrixType::IsRowMajor) && m2.rows()<=m3.cols())
+    {
+      VERIFY_EVALUATION_COUNT(m4 = m2*m3, 3); // 1 temp for the result + 2 for transposing and get a sorted result.
+      VERIFY_EVALUATION_COUNT(m4 = (m2*m3).pruned(0), 1);
+      VERIFY_EVALUATION_COUNT(m4 = (m2*m3).eval().pruned(0), 4);
+    }
+
+    // and that pruning is effective:
+    {
+      DenseMatrix Ad(2,2);
+      Ad << -1, 1, 1, 1;
+      SparseMatrixType As(Ad.sparseView()), B(2,2);
+      VERIFY_IS_EQUAL( (As*As.transpose()).eval().nonZeros(), 4);
+      VERIFY_IS_EQUAL( (Ad*Ad.transpose()).eval().sparseView().eval().nonZeros(), 2);
+      VERIFY_IS_EQUAL( (As*As.transpose()).pruned(1e-6).eval().nonZeros(), 2);
+    }
+
+    // dense ?= sparse * sparse
+    VERIFY_IS_APPROX(dm4 =m2*m3, refMat4 =refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4+=m2*m3, refMat4+=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4-=m2*m3, refMat4-=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4 =m2t.transpose()*m3, refMat4 =refMat2t.transpose()*refMat3);
+    VERIFY_IS_APPROX(dm4+=m2t.transpose()*m3, refMat4+=refMat2t.transpose()*refMat3);
+    VERIFY_IS_APPROX(dm4-=m2t.transpose()*m3, refMat4-=refMat2t.transpose()*refMat3);
+    VERIFY_IS_APPROX(dm4 =m2t.transpose()*m3t.transpose(), refMat4 =refMat2t.transpose()*refMat3t.transpose());
+    VERIFY_IS_APPROX(dm4+=m2t.transpose()*m3t.transpose(), refMat4+=refMat2t.transpose()*refMat3t.transpose());
+    VERIFY_IS_APPROX(dm4-=m2t.transpose()*m3t.transpose(), refMat4-=refMat2t.transpose()*refMat3t.transpose());
+    VERIFY_IS_APPROX(dm4 =m2*m3t.transpose(), refMat4 =refMat2*refMat3t.transpose());
+    VERIFY_IS_APPROX(dm4+=m2*m3t.transpose(), refMat4+=refMat2*refMat3t.transpose());
+    VERIFY_IS_APPROX(dm4-=m2*m3t.transpose(), refMat4-=refMat2*refMat3t.transpose());
+    VERIFY_IS_APPROX(dm4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1);
+
     // test aliasing
     m4 = m2; refMat4 = refMat2;
     VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3);
 
-    // sparse * dense
+    // sparse * dense matrix
     VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
     VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose());
     VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3);
     VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
 
+    VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4=dm4+m2*refMat3, refMat4=refMat4+refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4+=m2*refMat3, refMat4+=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4-=m2*refMat3, refMat4-=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4.noalias()+=m2*refMat3, refMat4+=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4.noalias()-=m2*refMat3, refMat4-=refMat2*refMat3);
     VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3));
     VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5);
+    
+    // sparse * dense vector
+    VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3.col(0), refMat4.col(0)=refMat2*refMat3.col(0));
+    VERIFY_IS_APPROX(dm4.col(0)=m2*refMat3t.transpose().col(0), refMat4.col(0)=refMat2*refMat3t.transpose().col(0));
+    VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3.col(0), refMat4.col(0)=refMat2t.transpose()*refMat3.col(0));
+    VERIFY_IS_APPROX(dm4.col(0)=m2t.transpose()*refMat3t.transpose().col(0), refMat4.col(0)=refMat2t.transpose()*refMat3t.transpose().col(0));
 
     // dense * sparse
     VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4=dm4+refMat2*m3, refMat4=refMat4+refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4+=refMat2*m3, refMat4+=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4-=refMat2*m3, refMat4-=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4.noalias()+=refMat2*m3, refMat4+=refMat2*refMat3);
+    VERIFY_IS_APPROX(dm4.noalias()-=refMat2*m3, refMat4-=refMat2*refMat3);
     VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose());
     VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3);
     VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose());
 
     // sparse * dense and dense * sparse outer product
-    test_outer<SparseMatrixType,DenseMatrix>::run(m2,m4,refMat2,refMat4);
+    {
+      Index c  = internal::random<Index>(0,depth-1);
+      Index r  = internal::random<Index>(0,rows-1);
+      Index c1 = internal::random<Index>(0,cols-1);
+      Index r1 = internal::random<Index>(0,depth-1);
+      DenseMatrix dm5  = DenseMatrix::Random(depth, cols);
+
+      VERIFY_IS_APPROX( m4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX( m4=m2.middleCols(c,1)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX(dm4=m2.col(c)*dm5.col(c1).transpose(), refMat4=refMat2.col(c)*dm5.col(c1).transpose());
+      
+      VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX(m4=dm5.col(c1)*m2.middleCols(c,1).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX(dm4=dm5.col(c1)*m2.col(c).transpose(), refMat4=dm5.col(c1)*refMat2.col(c).transpose());
+
+      VERIFY_IS_APPROX( m4=dm5.row(r1).transpose()*m2.col(c).transpose(), refMat4=dm5.row(r1).transpose()*refMat2.col(c).transpose());
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX(dm4=dm5.row(r1).transpose()*m2.col(c).transpose(), refMat4=dm5.row(r1).transpose()*refMat2.col(c).transpose());
+
+      VERIFY_IS_APPROX( m4=m2.row(r).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX( m4=m2.middleRows(r,1).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX(dm4=m2.row(r).transpose()*dm5.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*dm5.col(c1).transpose());
+
+      VERIFY_IS_APPROX( m4=dm5.col(c1)*m2.row(r), refMat4=dm5.col(c1)*refMat2.row(r));
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX( m4=dm5.col(c1)*m2.middleRows(r,1), refMat4=dm5.col(c1)*refMat2.row(r));
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX(dm4=dm5.col(c1)*m2.row(r), refMat4=dm5.col(c1)*refMat2.row(r));
+
+      VERIFY_IS_APPROX( m4=dm5.row(r1).transpose()*m2.row(r), refMat4=dm5.row(r1).transpose()*refMat2.row(r));
+      VERIFY_IS_EQUAL(m4.nonZeros(), (refMat4.array()!=0).count());
+      VERIFY_IS_APPROX(dm4=dm5.row(r1).transpose()*m2.row(r), refMat4=dm5.row(r1).transpose()*refMat2.row(r));
+    }
 
     VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6);
     
@@ -131,11 +220,11 @@
     RowSpVector rv0(depth), rv1;
     RowDenseVector drv0(depth), drv1(rv1);
     initSparse(2*density,drv0, rv0);
-    
-    VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
+
+    VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);    
     VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3);
-    VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0);
     VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0);
+    VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3);
     VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0);
   }
   
@@ -158,12 +247,16 @@
     // also check with a SparseWrapper:
     DenseVector v1 = DenseVector::Random(cols);
     DenseVector v2 = DenseVector::Random(rows);
+    DenseVector v3 = DenseVector::Random(rows);
     VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal());
     VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal());
     VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2);
     VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose());
     
     VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal());
+
+    VERIFY_IS_APPROX(v2=m2*v1.asDiagonal()*v1, refM2*v1.asDiagonal()*v1);
+    VERIFY_IS_APPROX(v3=v2.asDiagonal()*m2*v1, v2.asDiagonal()*refM2*v1);
     
     // evaluate to a dense matrix to check the .row() and .col() iterator functions
     VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1);
@@ -172,7 +265,7 @@
     VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose());
   }
 
-  // test self adjoint products
+  // test self-adjoint and triangular-view products
   {
     DenseMatrix b = DenseMatrix::Random(rows, rows);
     DenseMatrix x = DenseMatrix::Random(rows, rows);
@@ -180,9 +273,12 @@
     DenseMatrix refUp = DenseMatrix::Zero(rows, rows);
     DenseMatrix refLo = DenseMatrix::Zero(rows, rows);
     DenseMatrix refS = DenseMatrix::Zero(rows, rows);
+    DenseMatrix refA = DenseMatrix::Zero(rows, rows);
     SparseMatrixType mUp(rows, rows);
     SparseMatrixType mLo(rows, rows);
     SparseMatrixType mS(rows, rows);
+    SparseMatrixType mA(rows, rows);
+    initSparse<Scalar>(density, refA, mA);
     do {
       initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular);
     } while (refUp.isZero());
@@ -195,26 +291,45 @@
     for (int k=0; k<mS.outerSize(); ++k)
       for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it)
         if (it.index() == k)
-          it.valueRef() *= 0.5;
+          it.valueRef() *= Scalar(0.5);
 
     VERIFY_IS_APPROX(refS.adjoint(), refS);
     VERIFY_IS_APPROX(mS.adjoint(), mS);
     VERIFY_IS_APPROX(mS, refS);
     VERIFY_IS_APPROX(x=mS*b, refX=refS*b);
 
+    // sparse selfadjointView with dense matrices
     VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b);
     VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b);
     VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b);
+
+    VERIFY_IS_APPROX(x=b * mUp.template selfadjointView<Upper>(),       refX=b*refS);
+    VERIFY_IS_APPROX(x=b * mLo.template selfadjointView<Lower>(),       refX=b*refS);
+    VERIFY_IS_APPROX(x=b * mS.template selfadjointView<Upper|Lower>(),  refX=b*refS);
+
+    VERIFY_IS_APPROX(x.noalias()+=mUp.template selfadjointView<Upper>()*b, refX+=refS*b);
+    VERIFY_IS_APPROX(x.noalias()-=mLo.template selfadjointView<Lower>()*b, refX-=refS*b);
+    VERIFY_IS_APPROX(x.noalias()+=mS.template selfadjointView<Upper|Lower>()*b, refX+=refS*b);
     
-    // sparse selfadjointView * sparse 
+    // sparse selfadjointView with sparse matrices
     SparseMatrixType mSres(rows,rows);
     VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS,
                      refX = refLo.template selfadjointView<Lower>()*refS);
-    // sparse * sparse selfadjointview
     VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(),
                      refX = refS * refLo.template selfadjointView<Lower>());
+    
+    // sparse triangularView with dense matrices
+    VERIFY_IS_APPROX(x=mA.template triangularView<Upper>()*b, refX=refA.template triangularView<Upper>()*b);
+    VERIFY_IS_APPROX(x=mA.template triangularView<Lower>()*b, refX=refA.template triangularView<Lower>()*b);
+    VERIFY_IS_APPROX(x=b*mA.template triangularView<Upper>(), refX=b*refA.template triangularView<Upper>());
+    VERIFY_IS_APPROX(x=b*mA.template triangularView<Lower>(), refX=b*refA.template triangularView<Lower>());
+    
+    // sparse triangularView with sparse matrices
+    VERIFY_IS_APPROX(mSres = mA.template triangularView<Lower>()*mS,   refX = refA.template triangularView<Lower>()*refS);
+    VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Lower>(), refX = refS * refA.template triangularView<Lower>());
+    VERIFY_IS_APPROX(mSres = mA.template triangularView<Upper>()*mS,   refX = refA.template triangularView<Upper>()*refS);
+    VERIFY_IS_APPROX(mSres = mS * mA.template triangularView<Upper>(), refX = refS * refA.template triangularView<Upper>());
   }
-  
 }
 
 // New test for Bug in SparseTimeDenseProduct
@@ -239,14 +354,122 @@
   VERIFY_IS_APPROX( m4(0,0), 0.0 );
 }
 
+template<typename Scalar>
+void bug_942()
+{
+  typedef Matrix<Scalar, Dynamic, 1>     Vector;
+  typedef SparseMatrix<Scalar, ColMajor> ColSpMat;
+  typedef SparseMatrix<Scalar, RowMajor> RowSpMat;
+  ColSpMat cmA(1,1);
+  cmA.insert(0,0) = 1;
+
+  RowSpMat rmA(1,1);
+  rmA.insert(0,0) = 1;
+
+  Vector d(1);
+  d[0] = 2;
+  
+  double res = 2;
+  
+  VERIFY_IS_APPROX( ( cmA*d.asDiagonal() ).eval().coeff(0,0), res );
+  VERIFY_IS_APPROX( ( d.asDiagonal()*rmA ).eval().coeff(0,0), res );
+  VERIFY_IS_APPROX( ( rmA*d.asDiagonal() ).eval().coeff(0,0), res );
+  VERIFY_IS_APPROX( ( d.asDiagonal()*cmA ).eval().coeff(0,0), res );
+}
+
+template<typename Real>
+void test_mixing_types()
+{
+  typedef std::complex<Real> Cplx;
+  typedef SparseMatrix<Real> SpMatReal;
+  typedef SparseMatrix<Cplx> SpMatCplx;
+  typedef SparseMatrix<Cplx,RowMajor> SpRowMatCplx;
+  typedef Matrix<Real,Dynamic,Dynamic> DenseMatReal;
+  typedef Matrix<Cplx,Dynamic,Dynamic> DenseMatCplx;
+
+  Index n = internal::random<Index>(1,100);
+  double density = (std::max)(8./(n*n), 0.2);
+
+  SpMatReal sR1(n,n);
+  SpMatCplx sC1(n,n), sC2(n,n), sC3(n,n);
+  SpRowMatCplx sCR(n,n);
+  DenseMatReal dR1(n,n);
+  DenseMatCplx dC1(n,n), dC2(n,n), dC3(n,n);
+
+  initSparse<Real>(density, dR1, sR1);
+  initSparse<Cplx>(density, dC1, sC1);
+  initSparse<Cplx>(density, dC2, sC2);
+
+  VERIFY_IS_APPROX( sC2 = (sR1 * sC1),                         dC3 = dR1.template cast<Cplx>() * dC1 );
+  VERIFY_IS_APPROX( sC2 = (sC1 * sR1),                         dC3 = dC1 * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1),             dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
+  VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1),             dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( sC2 = (sR1 * sC1.transpose()),             dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
+  VERIFY_IS_APPROX( sC2 = (sC1 * sR1.transpose()),             dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
+  VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
+  VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
+
+  VERIFY_IS_APPROX( sCR = (sR1 * sC1),                         dC3 = dR1.template cast<Cplx>() * dC1 );
+  VERIFY_IS_APPROX( sCR = (sC1 * sR1),                         dC3 = dC1 * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1),             dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
+  VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1),             dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( sCR = (sR1 * sC1.transpose()),             dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
+  VERIFY_IS_APPROX( sCR = (sC1 * sR1.transpose()),             dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
+  VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
+  VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
+
+
+  VERIFY_IS_APPROX( sC2 = (sR1 * sC1).pruned(),                         dC3 = dR1.template cast<Cplx>() * dC1 );
+  VERIFY_IS_APPROX( sC2 = (sC1 * sR1).pruned(),                         dC3 = dC1 * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1).pruned(),             dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
+  VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1).pruned(),             dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( sC2 = (sR1 * sC1.transpose()).pruned(),             dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
+  VERIFY_IS_APPROX( sC2 = (sC1 * sR1.transpose()).pruned(),             dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
+  VERIFY_IS_APPROX( sC2 = (sR1.transpose() * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
+  VERIFY_IS_APPROX( sC2 = (sC1.transpose() * sR1.transpose()).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
+
+  VERIFY_IS_APPROX( sCR = (sR1 * sC1).pruned(),                         dC3 = dR1.template cast<Cplx>() * dC1 );
+  VERIFY_IS_APPROX( sCR = (sC1 * sR1).pruned(),                         dC3 = dC1 * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1).pruned(),             dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
+  VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1).pruned(),             dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( sCR = (sR1 * sC1.transpose()).pruned(),             dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
+  VERIFY_IS_APPROX( sCR = (sC1 * sR1.transpose()).pruned(),             dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
+  VERIFY_IS_APPROX( sCR = (sR1.transpose() * sC1.transpose()).pruned(), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
+  VERIFY_IS_APPROX( sCR = (sC1.transpose() * sR1.transpose()).pruned(), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
+
+
+  VERIFY_IS_APPROX( dC2 = (sR1 * sC1),                         dC3 = dR1.template cast<Cplx>() * dC1 );
+  VERIFY_IS_APPROX( dC2 = (sC1 * sR1),                         dC3 = dC1 * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( dC2 = (sR1.transpose() * sC1),             dC3 = dR1.template cast<Cplx>().transpose() * dC1 );
+  VERIFY_IS_APPROX( dC2 = (sC1.transpose() * sR1),             dC3 = dC1.transpose() * dR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( dC2 = (sR1 * sC1.transpose()),             dC3 = dR1.template cast<Cplx>() * dC1.transpose() );
+  VERIFY_IS_APPROX( dC2 = (sC1 * sR1.transpose()),             dC3 = dC1 * dR1.template cast<Cplx>().transpose() );
+  VERIFY_IS_APPROX( dC2 = (sR1.transpose() * sC1.transpose()), dC3 = dR1.template cast<Cplx>().transpose() * dC1.transpose() );
+  VERIFY_IS_APPROX( dC2 = (sC1.transpose() * sR1.transpose()), dC3 = dC1.transpose() * dR1.template cast<Cplx>().transpose() );
+
+
+  VERIFY_IS_APPROX( dC2 = dR1 * sC1, dC3 = dR1.template cast<Cplx>() * sC1 );
+  VERIFY_IS_APPROX( dC2 = sR1 * dC1, dC3 = sR1.template cast<Cplx>() * dC1 );
+  VERIFY_IS_APPROX( dC2 = dC1 * sR1, dC3 = dC1 * sR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( dC2 = sC1 * dR1, dC3 = sC1 * dR1.template cast<Cplx>() );
+
+  VERIFY_IS_APPROX( dC2 = dR1.row(0) * sC1, dC3 = dR1.template cast<Cplx>().row(0) * sC1 );
+  VERIFY_IS_APPROX( dC2 = sR1 * dC1.col(0), dC3 = sR1.template cast<Cplx>() * dC1.col(0) );
+  VERIFY_IS_APPROX( dC2 = dC1.row(0) * sR1, dC3 = dC1.row(0) * sR1.template cast<Cplx>() );
+  VERIFY_IS_APPROX( dC2 = sC1 * dR1.col(0), dC3 = sC1 * dR1.template cast<Cplx>().col(0) );
+}
+
 void test_sparse_product()
 {
   for(int i = 0; i < g_repeat; i++) {
     CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,ColMajor> >()) );
     CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) );
+    CALL_SUBTEST_1( (bug_942<double>()) );
     CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) );
     CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) );
     CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) );
     CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) );
+
+    CALL_SUBTEST_5( (test_mixing_types<float>()) );
   }
 }