Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "sparse.h" |
| 11 | |
| 12 | template<typename SparseMatrixType, typename DenseMatrix, bool IsRowMajor=SparseMatrixType::IsRowMajor> struct test_outer; |
| 13 | |
| 14 | template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,false> { |
| 15 | static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) { |
| 16 | typedef typename SparseMatrixType::Index Index; |
| 17 | Index c = internal::random<Index>(0,m2.cols()-1); |
| 18 | Index c1 = internal::random<Index>(0,m2.cols()-1); |
| 19 | VERIFY_IS_APPROX(m4=m2.col(c)*refMat2.col(c1).transpose(), refMat4=refMat2.col(c)*refMat2.col(c1).transpose()); |
| 20 | VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.col(c).transpose(), refMat4=refMat2.col(c1)*refMat2.col(c).transpose()); |
| 21 | } |
| 22 | }; |
| 23 | |
| 24 | template<typename SparseMatrixType, typename DenseMatrix> struct test_outer<SparseMatrixType,DenseMatrix,true> { |
| 25 | static void run(SparseMatrixType& m2, SparseMatrixType& m4, DenseMatrix& refMat2, DenseMatrix& refMat4) { |
| 26 | typedef typename SparseMatrixType::Index Index; |
| 27 | Index r = internal::random<Index>(0,m2.rows()-1); |
| 28 | Index c1 = internal::random<Index>(0,m2.cols()-1); |
| 29 | VERIFY_IS_APPROX(m4=m2.row(r).transpose()*refMat2.col(c1).transpose(), refMat4=refMat2.row(r).transpose()*refMat2.col(c1).transpose()); |
| 30 | VERIFY_IS_APPROX(m4=refMat2.col(c1)*m2.row(r), refMat4=refMat2.col(c1)*refMat2.row(r)); |
| 31 | } |
| 32 | }; |
| 33 | |
| 34 | // (m2,m4,refMat2,refMat4,dv1); |
| 35 | // VERIFY_IS_APPROX(m4=m2.innerVector(c)*dv1.transpose(), refMat4=refMat2.colVector(c)*dv1.transpose()); |
| 36 | // VERIFY_IS_APPROX(m4=dv1*mcm.col(c).transpose(), refMat4=dv1*refMat2.col(c).transpose()); |
| 37 | |
| 38 | template<typename SparseMatrixType> void sparse_product() |
| 39 | { |
| 40 | typedef typename SparseMatrixType::Index Index; |
| 41 | Index n = 100; |
| 42 | const Index rows = internal::random<Index>(1,n); |
| 43 | const Index cols = internal::random<Index>(1,n); |
| 44 | const Index depth = internal::random<Index>(1,n); |
| 45 | typedef typename SparseMatrixType::Scalar Scalar; |
| 46 | enum { Flags = SparseMatrixType::Flags }; |
| 47 | |
| 48 | double density = (std::max)(8./(rows*cols), 0.1); |
| 49 | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| 50 | typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| 51 | typedef Matrix<Scalar,1,Dynamic> RowDenseVector; |
| 52 | typedef SparseVector<Scalar,0,Index> ColSpVector; |
| 53 | typedef SparseVector<Scalar,RowMajor,Index> RowSpVector; |
| 54 | |
| 55 | Scalar s1 = internal::random<Scalar>(); |
| 56 | Scalar s2 = internal::random<Scalar>(); |
| 57 | |
| 58 | // test matrix-matrix product |
| 59 | { |
| 60 | DenseMatrix refMat2 = DenseMatrix::Zero(rows, depth); |
| 61 | DenseMatrix refMat2t = DenseMatrix::Zero(depth, rows); |
| 62 | DenseMatrix refMat3 = DenseMatrix::Zero(depth, cols); |
| 63 | DenseMatrix refMat3t = DenseMatrix::Zero(cols, depth); |
| 64 | DenseMatrix refMat4 = DenseMatrix::Zero(rows, cols); |
| 65 | DenseMatrix refMat4t = DenseMatrix::Zero(cols, rows); |
| 66 | DenseMatrix refMat5 = DenseMatrix::Random(depth, cols); |
| 67 | DenseMatrix refMat6 = DenseMatrix::Random(rows, rows); |
| 68 | DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); |
| 69 | // DenseVector dv1 = DenseVector::Random(rows); |
| 70 | SparseMatrixType m2 (rows, depth); |
| 71 | SparseMatrixType m2t(depth, rows); |
| 72 | SparseMatrixType m3 (depth, cols); |
| 73 | SparseMatrixType m3t(cols, depth); |
| 74 | SparseMatrixType m4 (rows, cols); |
| 75 | SparseMatrixType m4t(cols, rows); |
| 76 | SparseMatrixType m6(rows, rows); |
| 77 | initSparse(density, refMat2, m2); |
| 78 | initSparse(density, refMat2t, m2t); |
| 79 | initSparse(density, refMat3, m3); |
| 80 | initSparse(density, refMat3t, m3t); |
| 81 | initSparse(density, refMat4, m4); |
| 82 | initSparse(density, refMat4t, m4t); |
| 83 | initSparse(density, refMat6, m6); |
| 84 | |
| 85 | // int c = internal::random<int>(0,depth-1); |
| 86 | |
| 87 | // sparse * sparse |
| 88 | VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); |
| 89 | VERIFY_IS_APPROX(m4=m2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); |
| 90 | VERIFY_IS_APPROX(m4=m2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); |
| 91 | VERIFY_IS_APPROX(m4=m2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); |
| 92 | |
| 93 | VERIFY_IS_APPROX(m4 = m2*m3/s1, refMat4 = refMat2*refMat3/s1); |
| 94 | VERIFY_IS_APPROX(m4 = m2*m3*s1, refMat4 = refMat2*refMat3*s1); |
| 95 | VERIFY_IS_APPROX(m4 = s2*m2*m3*s1, refMat4 = s2*refMat2*refMat3*s1); |
| 96 | |
| 97 | VERIFY_IS_APPROX(m4=(m2*m3).pruned(0), refMat4=refMat2*refMat3); |
| 98 | VERIFY_IS_APPROX(m4=(m2t.transpose()*m3).pruned(0), refMat4=refMat2t.transpose()*refMat3); |
| 99 | VERIFY_IS_APPROX(m4=(m2t.transpose()*m3t.transpose()).pruned(0), refMat4=refMat2t.transpose()*refMat3t.transpose()); |
| 100 | VERIFY_IS_APPROX(m4=(m2*m3t.transpose()).pruned(0), refMat4=refMat2*refMat3t.transpose()); |
| 101 | |
| 102 | // test aliasing |
| 103 | m4 = m2; refMat4 = refMat2; |
| 104 | VERIFY_IS_APPROX(m4=m4*m3, refMat4=refMat4*refMat3); |
| 105 | |
| 106 | // sparse * dense |
| 107 | VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); |
| 108 | VERIFY_IS_APPROX(dm4=m2*refMat3t.transpose(), refMat4=refMat2*refMat3t.transpose()); |
| 109 | VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3, refMat4=refMat2t.transpose()*refMat3); |
| 110 | VERIFY_IS_APPROX(dm4=m2t.transpose()*refMat3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); |
| 111 | |
| 112 | VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); |
| 113 | VERIFY_IS_APPROX(dm4=m2t.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2t.transpose()*(refMat3+refMat5)*0.5); |
| 114 | |
| 115 | // dense * sparse |
| 116 | VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); |
| 117 | VERIFY_IS_APPROX(dm4=refMat2*m3t.transpose(), refMat4=refMat2*refMat3t.transpose()); |
| 118 | VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3, refMat4=refMat2t.transpose()*refMat3); |
| 119 | VERIFY_IS_APPROX(dm4=refMat2t.transpose()*m3t.transpose(), refMat4=refMat2t.transpose()*refMat3t.transpose()); |
| 120 | |
| 121 | // sparse * dense and dense * sparse outer product |
| 122 | test_outer<SparseMatrixType,DenseMatrix>::run(m2,m4,refMat2,refMat4); |
| 123 | |
| 124 | VERIFY_IS_APPROX(m6=m6*m6, refMat6=refMat6*refMat6); |
| 125 | |
| 126 | // sparse matrix * sparse vector |
| 127 | ColSpVector cv0(cols), cv1; |
| 128 | DenseVector dcv0(cols), dcv1; |
| 129 | initSparse(2*density,dcv0, cv0); |
| 130 | |
| 131 | RowSpVector rv0(depth), rv1; |
| 132 | RowDenseVector drv0(depth), drv1(rv1); |
| 133 | initSparse(2*density,drv0, rv0); |
| 134 | |
| 135 | VERIFY_IS_APPROX(cv1=rv0*m3, dcv1=drv0*refMat3); |
| 136 | VERIFY_IS_APPROX(rv1=rv0*m3, drv1=drv0*refMat3); |
| 137 | VERIFY_IS_APPROX(cv1=m3*cv0, dcv1=refMat3*dcv0); |
| 138 | VERIFY_IS_APPROX(cv1=m3t.adjoint()*cv0, dcv1=refMat3t.adjoint()*dcv0); |
| 139 | VERIFY_IS_APPROX(rv1=m3*cv0, drv1=refMat3*dcv0); |
| 140 | } |
| 141 | |
| 142 | // test matrix - diagonal product |
| 143 | { |
| 144 | DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); |
| 145 | DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); |
| 146 | DenseMatrix d3 = DenseMatrix::Zero(rows, cols); |
| 147 | DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(cols)); |
| 148 | DiagonalMatrix<Scalar,Dynamic> d2(DenseVector::Random(rows)); |
| 149 | SparseMatrixType m2(rows, cols); |
| 150 | SparseMatrixType m3(rows, cols); |
| 151 | initSparse<Scalar>(density, refM2, m2); |
| 152 | initSparse<Scalar>(density, refM3, m3); |
| 153 | VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); |
| 154 | VERIFY_IS_APPROX(m3=m2.transpose()*d2, refM3=refM2.transpose()*d2); |
| 155 | VERIFY_IS_APPROX(m3=d2*m2, refM3=d2*refM2); |
| 156 | VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1*refM2.transpose()); |
| 157 | |
| 158 | // also check with a SparseWrapper: |
| 159 | DenseVector v1 = DenseVector::Random(cols); |
| 160 | DenseVector v2 = DenseVector::Random(rows); |
| 161 | VERIFY_IS_APPROX(m3=m2*v1.asDiagonal(), refM3=refM2*v1.asDiagonal()); |
| 162 | VERIFY_IS_APPROX(m3=m2.transpose()*v2.asDiagonal(), refM3=refM2.transpose()*v2.asDiagonal()); |
| 163 | VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2, refM3=v2.asDiagonal()*refM2); |
| 164 | VERIFY_IS_APPROX(m3=v1.asDiagonal()*m2.transpose(), refM3=v1.asDiagonal()*refM2.transpose()); |
| 165 | |
| 166 | VERIFY_IS_APPROX(m3=v2.asDiagonal()*m2*v1.asDiagonal(), refM3=v2.asDiagonal()*refM2*v1.asDiagonal()); |
| 167 | |
| 168 | // evaluate to a dense matrix to check the .row() and .col() iterator functions |
| 169 | VERIFY_IS_APPROX(d3=m2*d1, refM3=refM2*d1); |
| 170 | VERIFY_IS_APPROX(d3=m2.transpose()*d2, refM3=refM2.transpose()*d2); |
| 171 | VERIFY_IS_APPROX(d3=d2*m2, refM3=d2*refM2); |
| 172 | VERIFY_IS_APPROX(d3=d1*m2.transpose(), refM3=d1*refM2.transpose()); |
| 173 | } |
| 174 | |
| 175 | // test self adjoint products |
| 176 | { |
| 177 | DenseMatrix b = DenseMatrix::Random(rows, rows); |
| 178 | DenseMatrix x = DenseMatrix::Random(rows, rows); |
| 179 | DenseMatrix refX = DenseMatrix::Random(rows, rows); |
| 180 | DenseMatrix refUp = DenseMatrix::Zero(rows, rows); |
| 181 | DenseMatrix refLo = DenseMatrix::Zero(rows, rows); |
| 182 | DenseMatrix refS = DenseMatrix::Zero(rows, rows); |
| 183 | SparseMatrixType mUp(rows, rows); |
| 184 | SparseMatrixType mLo(rows, rows); |
| 185 | SparseMatrixType mS(rows, rows); |
| 186 | do { |
| 187 | initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); |
| 188 | } while (refUp.isZero()); |
| 189 | refLo = refUp.adjoint(); |
| 190 | mLo = mUp.adjoint(); |
| 191 | refS = refUp + refLo; |
| 192 | refS.diagonal() *= 0.5; |
| 193 | mS = mUp + mLo; |
| 194 | // TODO be able to address the diagonal.... |
| 195 | for (int k=0; k<mS.outerSize(); ++k) |
| 196 | for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) |
| 197 | if (it.index() == k) |
| 198 | it.valueRef() *= 0.5; |
| 199 | |
| 200 | VERIFY_IS_APPROX(refS.adjoint(), refS); |
| 201 | VERIFY_IS_APPROX(mS.adjoint(), mS); |
| 202 | VERIFY_IS_APPROX(mS, refS); |
| 203 | VERIFY_IS_APPROX(x=mS*b, refX=refS*b); |
| 204 | |
| 205 | VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b); |
| 206 | VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b); |
| 207 | VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b); |
| 208 | |
| 209 | // sparse selfadjointView * sparse |
| 210 | SparseMatrixType mSres(rows,rows); |
| 211 | VERIFY_IS_APPROX(mSres = mLo.template selfadjointView<Lower>()*mS, |
| 212 | refX = refLo.template selfadjointView<Lower>()*refS); |
| 213 | // sparse * sparse selfadjointview |
| 214 | VERIFY_IS_APPROX(mSres = mS * mLo.template selfadjointView<Lower>(), |
| 215 | refX = refS * refLo.template selfadjointView<Lower>()); |
| 216 | } |
| 217 | |
| 218 | } |
| 219 | |
| 220 | // New test for Bug in SparseTimeDenseProduct |
| 221 | template<typename SparseMatrixType, typename DenseMatrixType> void sparse_product_regression_test() |
| 222 | { |
| 223 | // This code does not compile with afflicted versions of the bug |
| 224 | SparseMatrixType sm1(3,2); |
| 225 | DenseMatrixType m2(2,2); |
| 226 | sm1.setZero(); |
| 227 | m2.setZero(); |
| 228 | |
| 229 | DenseMatrixType m3 = sm1*m2; |
| 230 | |
| 231 | |
| 232 | // This code produces a segfault with afflicted versions of another SparseTimeDenseProduct |
| 233 | // bug |
| 234 | |
| 235 | SparseMatrixType sm2(20000,2); |
| 236 | sm2.setZero(); |
| 237 | DenseMatrixType m4(sm2*m2); |
| 238 | |
| 239 | VERIFY_IS_APPROX( m4(0,0), 0.0 ); |
| 240 | } |
| 241 | |
| 242 | void test_sparse_product() |
| 243 | { |
| 244 | for(int i = 0; i < g_repeat; i++) { |
| 245 | CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,ColMajor> >()) ); |
| 246 | CALL_SUBTEST_1( (sparse_product<SparseMatrix<double,RowMajor> >()) ); |
| 247 | CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, ColMajor > >()) ); |
| 248 | CALL_SUBTEST_2( (sparse_product<SparseMatrix<std::complex<double>, RowMajor > >()) ); |
| 249 | CALL_SUBTEST_3( (sparse_product<SparseMatrix<float,ColMajor,long int> >()) ); |
| 250 | CALL_SUBTEST_4( (sparse_product_regression_test<SparseMatrix<double,RowMajor>, Matrix<double, Dynamic, Dynamic, RowMajor> >()) ); |
| 251 | } |
| 252 | } |