Austin Schuh | 20b2b08 | 2019-09-11 20:42:56 -0700 | [diff] [blame] | 1 | #include "aos/ipc_lib/lockless_queue.h" |
| 2 | |
| 3 | #include <linux/futex.h> |
| 4 | #include <sys/types.h> |
| 5 | #include <syscall.h> |
| 6 | #include <unistd.h> |
| 7 | #include <algorithm> |
| 8 | #include <iomanip> |
| 9 | #include <iostream> |
| 10 | #include <sstream> |
| 11 | |
| 12 | #include "aos/init.h" |
| 13 | #include "aos/ipc_lib/lockless_queue_memory.h" |
| 14 | #include "aos/logging/logging.h" |
| 15 | #include "aos/util/compiler_memory_barrier.h" |
| 16 | |
| 17 | namespace aos { |
| 18 | namespace ipc_lib { |
| 19 | |
| 20 | namespace { |
| 21 | |
| 22 | constexpr bool kDebug = false; |
| 23 | |
| 24 | void GrabQueueSetupLockOrDie(LocklessQueueMemory *memory) { |
| 25 | const int result = mutex_grab(&(memory->queue_setup_lock)); |
| 26 | CHECK(result == 0 || result == 1); |
| 27 | } |
| 28 | |
| 29 | // This must be called under the queue_setup_lock. |
| 30 | void Cleanup(LocklessQueueMemory *memory) { |
| 31 | const size_t num_senders = memory->num_senders(); |
| 32 | const size_t queue_size = memory->queue_size(); |
| 33 | const size_t num_messages = memory->num_messages(); |
| 34 | |
| 35 | // There are a large number of crazy cases here for how things can go wrong |
| 36 | // and how we have to recover. They either require us to keep extra track of |
| 37 | // what is going on, slowing down the send path, or require a large number of |
| 38 | // cases. |
| 39 | // |
| 40 | // The solution here is to not over-think it. This is running while not real |
| 41 | // time during construction. It is allowed to be slow. It will also very |
| 42 | // rarely trigger. There is a small uS window where process death is |
| 43 | // ambiguous. |
| 44 | // |
| 45 | // So, build up a list N long, where N is the number of messages. Search |
| 46 | // through the entire queue and the sender list (ignoring any dead senders), |
| 47 | // and mark down which ones we have seen. Once we have seen all the messages |
| 48 | // except the N dead senders, we know which messages are dead. Because the |
| 49 | // queue is active while we do this, it may take a couple of go arounds to see |
| 50 | // everything. |
| 51 | |
| 52 | // Do the easy case. Find all senders who have died. See if they are either |
| 53 | // consistent already, or if they have copied over to_replace to the scratch |
| 54 | // index, but haven't cleared to_replace. Count them. |
| 55 | size_t valid_senders = 0; |
| 56 | for (size_t i = 0; i < num_senders; ++i) { |
| 57 | Sender *sender = memory->GetSender(i); |
| 58 | const uint32_t tid = |
| 59 | __atomic_load_n(&(sender->tid.futex), __ATOMIC_RELAXED); |
| 60 | if (tid & FUTEX_OWNER_DIED) { |
| 61 | if (kDebug) { |
| 62 | printf("Found an easy death for sender %zu\n", i); |
| 63 | } |
| 64 | const Index to_replace = sender->to_replace.RelaxedLoad(); |
| 65 | const Index scratch_index = sender->scratch_index.Load(); |
| 66 | |
| 67 | // I find it easiest to think about this in terms of the set of observable |
| 68 | // states. The main code follows the following states: |
| 69 | |
| 70 | // 1) scratch_index = xxx |
| 71 | // to_replace = invalid |
| 72 | // This is unambiguous. Already good. |
| 73 | |
| 74 | // 2) scratch_index = xxx |
| 75 | // to_replace = yyy |
| 76 | // Very ambiguous. Is xxx or yyy the correct one? Need to either roll |
| 77 | // this forwards or backwards. |
| 78 | |
| 79 | // 3) scratch_index = yyy |
| 80 | // to_replace = yyy |
| 81 | // We are in the act of moving to_replace to scratch_index, but didn't |
| 82 | // finish. Easy. |
| 83 | |
| 84 | // 4) scratch_index = yyy |
| 85 | // to_replace = invalid |
| 86 | // Finished, but died. Looks like 1) |
| 87 | |
| 88 | // Any cleanup code needs to follow the same set of states to be robust to |
| 89 | // death, so death can be restarted. |
| 90 | |
| 91 | // Could be 2) or 3). |
| 92 | if (to_replace.valid()) { |
| 93 | // 3) |
| 94 | if (to_replace == scratch_index) { |
| 95 | // Just need to invalidate to_replace to finish. |
| 96 | sender->to_replace.Invalidate(); |
| 97 | |
| 98 | // And mark that we succeeded. |
| 99 | __atomic_store_n(&(sender->tid.futex), 0, __ATOMIC_SEQ_CST); |
| 100 | ++valid_senders; |
| 101 | } |
| 102 | } else { |
| 103 | // 1) or 4). Make sure we aren't corrupted and declare victory. |
| 104 | CHECK(scratch_index.valid()); |
| 105 | |
| 106 | __atomic_store_n(&(sender->tid.futex), 0, __ATOMIC_SEQ_CST); |
| 107 | ++valid_senders; |
| 108 | } |
| 109 | } else { |
| 110 | // Not dead. |
| 111 | ++valid_senders; |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | // If all the senders are (or were made) good, there is no need to do the hard |
| 116 | // case. |
| 117 | if (valid_senders == num_senders) { |
| 118 | return; |
| 119 | } |
| 120 | |
| 121 | if (kDebug) { |
| 122 | printf("Starting hard cleanup\n"); |
| 123 | } |
| 124 | |
| 125 | size_t num_accounted_for = 0; |
| 126 | size_t num_missing = 0; |
| 127 | ::std::vector<bool> accounted_for(num_messages, false); |
| 128 | |
| 129 | while ((num_accounted_for + num_missing) != num_messages) { |
| 130 | num_missing = 0; |
| 131 | for (size_t i = 0; i < num_senders; ++i) { |
| 132 | Sender *sender = memory->GetSender(i); |
| 133 | const uint32_t tid = |
| 134 | __atomic_load_n(&(sender->tid.futex), __ATOMIC_RELAXED); |
| 135 | if (tid & FUTEX_OWNER_DIED) { |
| 136 | ++num_missing; |
| 137 | } else { |
| 138 | const Index scratch_index = sender->scratch_index.RelaxedLoad(); |
| 139 | if (!accounted_for[scratch_index.message_index()]) { |
| 140 | ++num_accounted_for; |
| 141 | } |
| 142 | accounted_for[scratch_index.message_index()] = true; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | for (size_t i = 0; i < queue_size; ++i) { |
| 147 | const Index index = memory->GetQueue(i)->RelaxedLoad(); |
| 148 | if (!accounted_for[index.message_index()]) { |
| 149 | ++num_accounted_for; |
| 150 | } |
| 151 | accounted_for[index.message_index()] = true; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | while (num_missing != 0) { |
| 156 | const size_t starting_num_missing = num_missing; |
| 157 | for (size_t i = 0; i < num_senders; ++i) { |
| 158 | Sender *sender = memory->GetSender(i); |
| 159 | const uint32_t tid = |
| 160 | __atomic_load_n(&(sender->tid.futex), __ATOMIC_RELAXED); |
| 161 | if (tid & FUTEX_OWNER_DIED) { |
| 162 | const Index scratch_index = sender->scratch_index.RelaxedLoad(); |
| 163 | const Index to_replace = sender->to_replace.RelaxedLoad(); |
| 164 | |
| 165 | // Candidate. |
| 166 | CHECK_LE(to_replace.message_index(), accounted_for.size()); |
| 167 | if (accounted_for[to_replace.message_index()]) { |
| 168 | if (kDebug) { |
| 169 | printf("Sender %zu died, to_replace is already accounted for\n", i); |
| 170 | } |
| 171 | // If both are accounted for, we are corrupt... |
| 172 | CHECK(!accounted_for[scratch_index.message_index()]); |
| 173 | |
| 174 | // to_replace is already accounted for. This means that we didn't |
| 175 | // atomically insert scratch_index into the queue yet. So |
| 176 | // invalidate to_replace. |
| 177 | sender->to_replace.Invalidate(); |
| 178 | |
| 179 | // And then mark this sender clean. |
| 180 | __atomic_store_n(&(sender->tid.futex), 0, __ATOMIC_SEQ_CST); |
| 181 | |
| 182 | // And account for scratch_index. |
| 183 | accounted_for[scratch_index.message_index()] = true; |
| 184 | --num_missing; |
| 185 | ++num_accounted_for; |
| 186 | } else if (accounted_for[scratch_index.message_index()]) { |
| 187 | if (kDebug) { |
| 188 | printf("Sender %zu died, scratch_index is already accounted for\n", i); |
| 189 | } |
| 190 | // scratch_index is accounted for. That means we did the insert, |
| 191 | // but didn't record it. |
| 192 | CHECK(to_replace.valid()); |
| 193 | // Finish the transaction. Copy to_replace, then clear it. |
| 194 | |
| 195 | sender->scratch_index.Store(to_replace); |
| 196 | sender->to_replace.Invalidate(); |
| 197 | |
| 198 | // And then mark this sender clean. |
| 199 | __atomic_store_n(&(sender->tid.futex), 0, __ATOMIC_SEQ_CST); |
| 200 | |
| 201 | // And account for to_replace. |
| 202 | accounted_for[to_replace.message_index()] = true; |
| 203 | --num_missing; |
| 204 | ++num_accounted_for; |
| 205 | } else { |
| 206 | if (kDebug) { |
| 207 | printf("Sender %zu died, neither is accounted for\n", i); |
| 208 | } |
| 209 | // Ambiguous. There will be an unambiguous one somewhere that we |
| 210 | // can do first. |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | // CHECK that we are making progress. |
| 215 | CHECK_NE(num_missing, starting_num_missing); |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | // Exposes rt_tgsigqueueinfo so we can send the signal *just* to the target |
| 220 | // thread. |
| 221 | int rt_tgsigqueueinfo(pid_t tgid, pid_t tid, int sig, siginfo_t *si) { |
| 222 | return syscall(SYS_rt_tgsigqueueinfo, tgid, tid, sig, si); |
| 223 | } |
| 224 | |
| 225 | } // namespace |
| 226 | |
| 227 | size_t LocklessQueueMemorySize(LocklessQueueConfiguration config) { |
| 228 | // Round up the message size so following data is double aligned. That should |
| 229 | // be overkill for most platforms. And the checks below confirms it. |
| 230 | config.message_data_size = (config.message_data_size + 7) & ~0x7; |
| 231 | |
| 232 | // As we build up the size, confirm that everything is aligned to the |
| 233 | // alignment requirements of the type. |
| 234 | size_t size = sizeof(LocklessQueueMemory); |
| 235 | CHECK_EQ(size & (alignof(LocklessQueueMemory) - 1), 0u); |
| 236 | |
| 237 | CHECK_EQ(size & (alignof(AtomicIndex) - 1), 0u); |
| 238 | size += LocklessQueueMemory::SizeOfQueue(config); |
| 239 | |
| 240 | CHECK_EQ(size & (alignof(Message) - 1), 0u); |
| 241 | size += LocklessQueueMemory::SizeOfMessages(config); |
| 242 | |
| 243 | CHECK_EQ(size & (alignof(Watcher) - 1), 0u); |
| 244 | size += LocklessQueueMemory::SizeOfWatchers(config); |
| 245 | |
| 246 | CHECK_EQ(size & (alignof(Sender) - 1), 0u); |
| 247 | size += LocklessQueueMemory::SizeOfSenders(config); |
| 248 | |
| 249 | return size; |
| 250 | } |
| 251 | |
| 252 | LocklessQueueMemory *InitializeLocklessQueueMemory( |
| 253 | LocklessQueueMemory *memory, LocklessQueueConfiguration config) { |
| 254 | // Everything should be zero initialized already. So we just need to fill |
| 255 | // everything out properly. |
| 256 | |
| 257 | // Grab the mutex. We don't care if the previous reader died. We are going |
| 258 | // to check everything anyways. |
| 259 | GrabQueueSetupLockOrDie(memory); |
| 260 | |
| 261 | if (!memory->initialized) { |
| 262 | // TODO(austin): Check these for out of bounds. |
| 263 | memory->config.num_watchers = config.num_watchers; |
| 264 | memory->config.num_senders = config.num_senders; |
| 265 | memory->config.queue_size = config.queue_size; |
| 266 | // Round up to the nearest double word bytes. |
| 267 | memory->config.message_data_size = (config.message_data_size + 7) & ~0x7; |
| 268 | |
| 269 | const size_t num_messages = memory->num_messages(); |
| 270 | // There need to be at most MaxMessages() messages allocated. |
| 271 | CHECK_LE(num_messages, Index::MaxMessages()); |
| 272 | |
| 273 | for (size_t i = 0; i < num_messages; ++i) { |
| 274 | memory->GetMessage(Index(QueueIndex::Zero(memory->queue_size()), i)) |
| 275 | ->header.queue_index.Invalidate(); |
| 276 | } |
| 277 | |
| 278 | for (size_t i = 0; i < memory->queue_size(); ++i) { |
| 279 | // Make the initial counter be the furthest away number. That means that |
| 280 | // index 0 should be 0xffff, 1 should be 0, etc. |
| 281 | memory->GetQueue(i)->Store(Index(QueueIndex::Zero(memory->queue_size()) |
| 282 | .IncrementBy(i) |
| 283 | .DecrementBy(memory->queue_size()), |
| 284 | i)); |
| 285 | } |
| 286 | |
| 287 | memory->next_queue_index.Invalidate(); |
| 288 | |
| 289 | for (size_t i = 0; i < memory->num_senders(); ++i) { |
| 290 | ::aos::ipc_lib::Sender *s = memory->GetSender(i); |
| 291 | s->scratch_index.Store(Index(0xffff, i + memory->queue_size())); |
| 292 | s->to_replace.RelaxedInvalidate(); |
| 293 | } |
| 294 | |
| 295 | // Signal everything is done. This needs to be done last, so if we die, we |
| 296 | // redo initialization. |
| 297 | // This is a full atomic (probably overkill), but this is at initialization |
| 298 | // time, so it is cheap. |
| 299 | memory->initialized.store(true); |
| 300 | } |
| 301 | |
| 302 | mutex_unlock(&(memory->queue_setup_lock)); |
| 303 | return memory; |
| 304 | } |
| 305 | |
| 306 | LocklessQueue::LocklessQueue(LocklessQueueMemory *memory, |
| 307 | LocklessQueueConfiguration config) |
| 308 | : memory_(InitializeLocklessQueueMemory(memory, config)), |
| 309 | watcher_copy_(memory_->num_watchers()), |
| 310 | pid_(getpid()), |
| 311 | uid_(getuid()) {} |
| 312 | |
| 313 | LocklessQueue::~LocklessQueue() { |
| 314 | CHECK_EQ(watcher_index_, -1); |
| 315 | |
| 316 | GrabQueueSetupLockOrDie(memory_); |
| 317 | const int num_watchers = memory_->num_watchers(); |
| 318 | // Cleanup is cheap. Go for it anyways. |
| 319 | |
| 320 | // And confirm that nothing is owned by us. |
| 321 | for (int i = 0; i < num_watchers; ++i) { |
| 322 | CHECK(!mutex_islocked(&(memory_->GetWatcher(i)->tid))); |
| 323 | } |
| 324 | mutex_unlock(&(memory_->queue_setup_lock)); |
| 325 | } |
| 326 | |
| 327 | size_t LocklessQueue::QueueSize() const { return memory_->queue_size(); } |
| 328 | |
| 329 | bool LocklessQueue::RegisterWakeup(int priority) { |
| 330 | // TODO(austin): Make sure signal coalescing is turned on. We don't need |
| 331 | // duplicates. That will improve performance under high load. |
| 332 | |
| 333 | // Since everything is self consistent, all we need to do is make sure nobody |
| 334 | // else is running. Someone dying will get caught in the generic consistency |
| 335 | // check. |
| 336 | GrabQueueSetupLockOrDie(memory_); |
| 337 | const int num_watchers = memory_->num_watchers(); |
| 338 | |
| 339 | // Now, find the first empty watcher and grab it. |
| 340 | CHECK_EQ(watcher_index_, -1); |
| 341 | for (int i = 0; i < num_watchers; ++i) { |
| 342 | const uint32_t tid = |
| 343 | __atomic_load_n(&(memory_->GetWatcher(i)->tid.futex), __ATOMIC_RELAXED); |
| 344 | if (tid == 0 || tid & FUTEX_OWNER_DIED) { |
| 345 | watcher_index_ = i; |
| 346 | break; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | // Bail if we failed to find an open slot. |
| 351 | if (watcher_index_ == -1) { |
| 352 | mutex_unlock(&(memory_->queue_setup_lock)); |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | Watcher *w = memory_->GetWatcher(watcher_index_); |
| 357 | |
| 358 | w->pid = getpid(); |
| 359 | w->priority = priority; |
| 360 | |
| 361 | // Grabbing a mutex is a compiler and memory barrier, so nothing before will |
| 362 | // get rearranged afterwords. |
| 363 | // |
| 364 | // Since everything is done under the queue_setup_lock, this should always |
| 365 | // return immediately. |
| 366 | const int result = mutex_grab(&(w->tid)); |
| 367 | |
| 368 | mutex_unlock(&(memory_->queue_setup_lock)); |
| 369 | |
| 370 | // We should either get the lock, or the previous owner should have died. |
| 371 | // Anything else is a pretty serious error. |
| 372 | return result == 0 || result == 1; |
| 373 | } |
| 374 | |
| 375 | void LocklessQueue::UnregisterWakeup() { |
| 376 | // Since everything is self consistent, all we need to do is make sure nobody |
| 377 | // else is running. Someone dying will get caught in the generic consistency |
| 378 | // check. |
| 379 | GrabQueueSetupLockOrDie(memory_); |
| 380 | |
| 381 | // Make sure we are registered. |
| 382 | CHECK_NE(watcher_index_, -1); |
| 383 | |
| 384 | // Make sure we still own the slot we are supposed to. |
| 385 | CHECK(mutex_islocked(&(memory_->GetWatcher(watcher_index_)->tid))); |
| 386 | |
| 387 | // The act of unlocking invalidates the entry. Invalidate it. |
| 388 | mutex_unlock(&(memory_->GetWatcher(watcher_index_)->tid)); |
| 389 | // And internally forget the slot. |
| 390 | watcher_index_ = -1; |
| 391 | |
| 392 | mutex_unlock(&(memory_->queue_setup_lock)); |
| 393 | } |
| 394 | |
| 395 | int LocklessQueue::Wakeup(const int current_priority) { |
| 396 | const size_t num_watchers = memory_->num_watchers(); |
| 397 | |
| 398 | CHECK_EQ(watcher_copy_.size(), num_watchers); |
| 399 | |
| 400 | // Grab a copy so it won't change out from underneath us, and we can sort it |
| 401 | // nicely in C++. |
| 402 | // Do note that there is still a window where the process can die *after* we |
| 403 | // read everything. We will still PI boost and send a signal to the thread in |
| 404 | // question. There is no way without pidfd's to close this window, and |
| 405 | // creating a pidfd is likely not RT. |
| 406 | for (size_t i = 0; i < num_watchers; ++i) { |
| 407 | Watcher *w = memory_->GetWatcher(i); |
| 408 | // Start by reading the tid. This needs to be atomic to force it to come first. |
| 409 | watcher_copy_[i].tid = __atomic_load_n(&(w->tid.futex), __ATOMIC_SEQ_CST); |
| 410 | watcher_copy_[i].pid = w->pid; |
| 411 | watcher_copy_[i].priority = w->priority; |
| 412 | |
| 413 | // Use a priority of -1 to mean an invalid entry to make sorting easier. |
| 414 | if (watcher_copy_[i].tid & FUTEX_OWNER_DIED || watcher_copy_[i].tid == 0) { |
| 415 | watcher_copy_[i].priority = -1; |
| 416 | } else if (watcher_copy_[i].tid != |
| 417 | static_cast<pid_t>( |
| 418 | __atomic_load_n(&(w->tid.futex), __ATOMIC_SEQ_CST))) { |
| 419 | // Confirm that the watcher hasn't been re-used and modified while we read |
| 420 | // it. If it has, mark it invalid again. |
| 421 | watcher_copy_[i].priority = -1; |
| 422 | watcher_copy_[i].tid = 0; |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | // Now sort. |
| 427 | ::std::sort(watcher_copy_.begin(), watcher_copy_.end(), |
| 428 | [](const WatcherCopy &a, const WatcherCopy &b) { |
| 429 | return a.priority > b.priority; |
| 430 | }); |
| 431 | |
| 432 | int count = 0; |
| 433 | if (watcher_copy_[0].priority != -1) { |
| 434 | const int max_priority = |
| 435 | ::std::max(current_priority, watcher_copy_[0].priority); |
| 436 | // Boost if we are RT and there is a higher priority sender out there. |
| 437 | // Otherwise we might run into priority inversions. |
| 438 | if (max_priority > current_priority && current_priority > 0) { |
| 439 | SetCurrentThreadRealtimePriority(max_priority); |
| 440 | } |
| 441 | |
| 442 | // Build up the siginfo to send. |
| 443 | siginfo_t uinfo; |
| 444 | memset(&uinfo, 0, sizeof(uinfo)); |
| 445 | |
| 446 | uinfo.si_code = SI_QUEUE; |
| 447 | uinfo.si_pid = pid_; |
| 448 | uinfo.si_uid = uid_; |
| 449 | uinfo.si_value.sival_int = 0; |
| 450 | |
| 451 | for (const WatcherCopy &watcher_copy : watcher_copy_) { |
| 452 | // The first -1 priority means we are at the end of the valid list. |
| 453 | if (watcher_copy.priority == -1) { |
| 454 | break; |
| 455 | } |
| 456 | |
| 457 | // Send the signal. Target just the thread that sent it so that we can |
| 458 | // support multiple watchers in a process (when someone creates multiple |
| 459 | // event loops in different threads). |
| 460 | rt_tgsigqueueinfo(watcher_copy.pid, watcher_copy.tid, kWakeupSignal, |
| 461 | &uinfo); |
| 462 | |
| 463 | ++count; |
| 464 | } |
| 465 | |
| 466 | // Drop back down if we were boosted. |
| 467 | if (max_priority > current_priority && current_priority > 0) { |
| 468 | SetCurrentThreadRealtimePriority(current_priority); |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | return count; |
| 473 | } |
| 474 | |
| 475 | LocklessQueue::Sender::Sender(LocklessQueueMemory *memory) : memory_(memory) { |
| 476 | GrabQueueSetupLockOrDie(memory_); |
| 477 | |
| 478 | // Since we already have the lock, go ahead and try cleaning up. |
| 479 | Cleanup(memory_); |
| 480 | |
| 481 | const int num_senders = memory_->num_senders(); |
| 482 | |
| 483 | for (int i = 0; i < num_senders; ++i) { |
| 484 | ::aos::ipc_lib::Sender *s = memory->GetSender(i); |
| 485 | const uint32_t tid = __atomic_load_n(&(s->tid.futex), __ATOMIC_RELAXED); |
| 486 | if (tid == 0) { |
| 487 | sender_index_ = i; |
| 488 | break; |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | if (sender_index_ == -1) { |
| 493 | LOG(FATAL, "Too many senders\n"); |
| 494 | } |
| 495 | |
| 496 | ::aos::ipc_lib::Sender *s = memory_->GetSender(sender_index_); |
| 497 | |
| 498 | // Atomically grab the mutex. This signals that we are alive. If the |
| 499 | // previous owner died, we don't care, and want to grab the mutex anyways. |
| 500 | const int result = mutex_grab(&(s->tid)); |
| 501 | CHECK(result == 0 || result == 1); |
| 502 | |
| 503 | mutex_unlock(&(memory->queue_setup_lock)); |
| 504 | } |
| 505 | |
| 506 | LocklessQueue::Sender::~Sender() { |
| 507 | if (memory_ != nullptr) { |
| 508 | mutex_unlock(&(memory_->GetSender(sender_index_)->tid)); |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | LocklessQueue::Sender LocklessQueue::MakeSender() { |
| 513 | return LocklessQueue::Sender(memory_); |
| 514 | } |
| 515 | |
| 516 | QueueIndex ZeroOrValid(QueueIndex index) { |
| 517 | if (!index.valid()) { |
| 518 | return index.Clear(); |
| 519 | } |
| 520 | return index; |
| 521 | } |
| 522 | |
| 523 | void LocklessQueue::Sender::Send(const char *data, size_t length) { |
| 524 | const size_t queue_size = memory_->queue_size(); |
| 525 | CHECK_LE(length, memory_->message_data_size()); |
| 526 | |
| 527 | ::aos::ipc_lib::Sender *sender = memory_->GetSender(sender_index_); |
| 528 | Index scratch_index = sender->scratch_index.RelaxedLoad(); |
| 529 | Message *message = memory_->GetMessage(scratch_index); |
| 530 | |
| 531 | message->header.queue_index.Invalidate(); |
| 532 | |
| 533 | message->header.length = length; |
| 534 | memcpy(&message->data[0], data, length); |
| 535 | |
| 536 | while (true) { |
| 537 | const QueueIndex actual_next_queue_index = |
| 538 | memory_->next_queue_index.Load(queue_size); |
| 539 | const QueueIndex next_queue_index = ZeroOrValid(actual_next_queue_index); |
| 540 | |
| 541 | const QueueIndex incremented_queue_index = next_queue_index.Increment(); |
| 542 | |
| 543 | // TODO(austin): I think we can drop the barrier off this. |
| 544 | const Index to_replace = memory_->LoadIndex(next_queue_index); |
| 545 | |
| 546 | const QueueIndex decremented_queue_index = |
| 547 | next_queue_index.DecrementBy(queue_size); |
| 548 | |
| 549 | // See if we got beat. If we did, try to atomically update |
| 550 | // next_queue_index in case the previous writer failed and retry. |
| 551 | if (!to_replace.IsPlausible(decremented_queue_index)) { |
| 552 | // We don't care about the result. It will either succeed, or we got |
| 553 | // beat in fixing it and just need to give up and try again. If we got |
| 554 | // beat multiple times, the only way progress can be made is if the queue |
| 555 | // is updated as well. This means that if we retry reading |
| 556 | // next_queue_index, we will be at most off by one and can retry. |
| 557 | // |
| 558 | // Both require no further action from us. |
| 559 | // |
| 560 | // TODO(austin): If we are having fairness issues under contention, we |
| 561 | // could have a mode bit in next_queue_index, and could use a lock or some |
| 562 | // other form of PI boosting to let the higher priority task win. |
| 563 | memory_->next_queue_index.CompareAndExchangeStrong( |
| 564 | actual_next_queue_index, incremented_queue_index); |
| 565 | |
| 566 | if (kDebug) { |
| 567 | printf("We were beat. Try again. Was %x, is %x\n", to_replace.get(), |
| 568 | decremented_queue_index.index()); |
| 569 | } |
| 570 | continue; |
| 571 | } |
| 572 | |
| 573 | // Confirm that the message is what it should be. |
| 574 | { |
| 575 | // We just need this to be atomic and after the index has been calculated |
| 576 | // and before we exchange the index back in. Both of those will be strong |
| 577 | // barriers, so this is fine. |
| 578 | const QueueIndex previous_index = |
| 579 | memory_->GetMessage(to_replace) |
| 580 | ->header.queue_index.RelaxedLoad(queue_size); |
| 581 | if (previous_index != decremented_queue_index && previous_index.valid()) { |
| 582 | // Retry. |
| 583 | if (kDebug) { |
| 584 | printf( |
| 585 | "Something fishy happened, queue index doesn't match. Retrying. " |
| 586 | " Previous index was %x, should be %x\n", |
| 587 | previous_index.index(), decremented_queue_index.index()); |
| 588 | } |
| 589 | continue; |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | message->header.monotonic_sent_time = ::aos::monotonic_clock::now(); |
| 594 | message->header.realtime_sent_time = ::aos::realtime_clock::now(); |
| 595 | |
| 596 | // Before we are fully done filling out the message, update the Sender state |
| 597 | // with the new index to write. This re-uses the barrier for the |
| 598 | // queue_index store. |
| 599 | const Index index_to_write(next_queue_index, |
| 600 | scratch_index.message_index()); |
| 601 | |
| 602 | sender->scratch_index.RelaxedStore(index_to_write); |
| 603 | |
| 604 | message->header.queue_index.Store(next_queue_index); |
| 605 | |
| 606 | // The message is now filled out, and we have a confirmed slot to store |
| 607 | // into. |
| 608 | // |
| 609 | // Start by writing down what we are going to pull out of the queue. This |
| 610 | // was Invalid before now. |
| 611 | sender->to_replace.RelaxedStore(to_replace); |
| 612 | |
| 613 | // Then exchange the next index into the queue. |
| 614 | if (!memory_->GetQueue(next_queue_index.Wrapped()) |
| 615 | ->CompareAndExchangeStrong(to_replace, index_to_write)) { |
| 616 | // Aw, didn't succeed. Retry. |
| 617 | sender->to_replace.RelaxedInvalidate(); |
| 618 | if (kDebug) { |
| 619 | printf("Failed to wrap into queue\n"); |
| 620 | } |
| 621 | continue; |
| 622 | } |
| 623 | |
| 624 | // Then update next_queue_index to save the next user some computation time. |
| 625 | memory_->next_queue_index.CompareAndExchangeStrong(actual_next_queue_index, |
| 626 | incremented_queue_index); |
| 627 | |
| 628 | // Now update the scratch space and record that we succeeded. |
| 629 | sender->scratch_index.Store(to_replace); |
| 630 | // And then clear out the entry used to replace. This just needs to be |
| 631 | // atomic. It can't be moved above the store because that is a full |
| 632 | // barrier, but delaying it until later will only affect things if something |
| 633 | // died. |
| 634 | sender->to_replace.RelaxedInvalidate(); |
| 635 | break; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | LocklessQueue::ReadResult LocklessQueue::Read( |
| 640 | uint32_t uint32_queue_index, |
| 641 | ::aos::monotonic_clock::time_point *monotonic_sent_time, |
| 642 | ::aos::realtime_clock::time_point *realtime_sent_time, size_t *length, |
| 643 | char *data) { |
| 644 | const size_t queue_size = memory_->queue_size(); |
| 645 | |
| 646 | // Build up the QueueIndex. |
| 647 | const QueueIndex queue_index = |
| 648 | QueueIndex::Zero(queue_size).IncrementBy(uint32_queue_index); |
| 649 | |
| 650 | // Read the message stored at the requested location. |
| 651 | Index mi = memory_->LoadIndex(queue_index); |
| 652 | Message *m = memory_->GetMessage(mi); |
| 653 | |
| 654 | while (true) { |
| 655 | // We need to confirm that the data doesn't change while we are reading it. |
| 656 | // Do that by first confirming that the message points to the queue index we |
| 657 | // want. |
| 658 | const QueueIndex starting_queue_index = |
| 659 | m->header.queue_index.Load(queue_size); |
| 660 | if (starting_queue_index != queue_index) { |
| 661 | // If we found a message that is exactly 1 loop old, we just wrapped. |
| 662 | if (starting_queue_index == queue_index.DecrementBy(queue_size)) { |
| 663 | if (kDebug) { |
| 664 | printf("Matches: %x, %x\n", starting_queue_index.index(), |
| 665 | queue_index.DecrementBy(queue_size).index()); |
| 666 | } |
| 667 | return ReadResult::NOTHING_NEW; |
| 668 | } else { |
| 669 | // Someone has re-used this message between when we pulled it out of the |
| 670 | // queue and when we grabbed its index. It is pretty hard to deduce |
| 671 | // what happened. Just try again. |
| 672 | Message *new_m = memory_->GetMessage(queue_index); |
| 673 | if (m != new_m) { |
| 674 | m = new_m; |
| 675 | if (kDebug) { |
| 676 | printf("Retrying, m doesn't match\n"); |
| 677 | } |
| 678 | continue; |
| 679 | } |
| 680 | |
| 681 | // We have confirmed that message still points to the same message. This |
| 682 | // means that the message didn't get swapped out from under us, so |
| 683 | // starting_queue_index is correct. |
| 684 | // |
| 685 | // Either we got too far behind (signaled by this being a valid |
| 686 | // message), or this is one of the initial messages which are invalid. |
| 687 | if (starting_queue_index.valid()) { |
| 688 | if (kDebug) { |
| 689 | printf("Too old. Tried for %x, got %x, behind by %d\n", |
| 690 | queue_index.index(), starting_queue_index.index(), |
| 691 | starting_queue_index.index() - queue_index.index()); |
| 692 | } |
| 693 | return ReadResult::TOO_OLD; |
| 694 | } |
| 695 | |
| 696 | if (kDebug) { |
| 697 | printf("Initial\n"); |
| 698 | } |
| 699 | |
| 700 | // There isn't a valid message at this location. |
| 701 | // |
| 702 | // If someone asks for one of the messages within the first go around, |
| 703 | // then they need to wait. They got ahead. Otherwise, they are |
| 704 | // asking for something crazy, like something before the beginning of |
| 705 | // the queue. Tell them that they are behind. |
| 706 | if (uint32_queue_index < memory_->queue_size()) { |
| 707 | if (kDebug) { |
| 708 | printf("Near zero, %x\n", uint32_queue_index); |
| 709 | } |
| 710 | return ReadResult::NOTHING_NEW; |
| 711 | } else { |
| 712 | if (kDebug) { |
| 713 | printf("not near zero, %x\n", uint32_queue_index); |
| 714 | } |
| 715 | return ReadResult::TOO_OLD; |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | if (kDebug) { |
| 720 | printf("Eq: %x, %x\n", starting_queue_index.index(), queue_index.index()); |
| 721 | } |
| 722 | break; |
| 723 | } |
| 724 | |
| 725 | // Then read the data out. |
| 726 | *monotonic_sent_time = m->header.monotonic_sent_time; |
| 727 | *realtime_sent_time = m->header.realtime_sent_time; |
| 728 | memcpy(data, &m->data[0], m->header.length); |
| 729 | *length = m->header.length; |
| 730 | |
| 731 | // And finally, confirm that the message *still* points to the queue index we |
| 732 | // want. This means it didn't change out from under us. |
| 733 | // If something changed out from under us, we were reading it much too late in |
| 734 | // it's lifetime. |
| 735 | const QueueIndex final_queue_index = m->header.queue_index.Load(queue_size); |
| 736 | if (final_queue_index != queue_index) { |
| 737 | if (kDebug) { |
| 738 | printf( |
| 739 | "Changed out from under us. Reading %x, finished with %x, delta: " |
| 740 | "%d\n", |
| 741 | queue_index.index(), final_queue_index.index(), |
| 742 | final_queue_index.index() - queue_index.index()); |
| 743 | } |
| 744 | return ReadResult::TOO_OLD; |
| 745 | } |
| 746 | |
| 747 | return ReadResult::GOOD; |
| 748 | } |
| 749 | |
| 750 | uint32_t LocklessQueue::LatestQueueIndex() { |
| 751 | const size_t queue_size = memory_->queue_size(); |
| 752 | |
| 753 | // There is only one interesting case. We need to know if the queue is empty. |
| 754 | // That is done with a sentinel value. At worst, this will be off by one. |
| 755 | const QueueIndex next_queue_index = |
| 756 | memory_->next_queue_index.Load(queue_size); |
| 757 | if (next_queue_index.valid()) { |
| 758 | const QueueIndex current_queue_index = next_queue_index.DecrementBy(1u); |
| 759 | return current_queue_index.index(); |
| 760 | } else { |
| 761 | return empty_queue_index(); |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | namespace { |
| 766 | |
| 767 | // Prints out the mutex state. Not safe to use while the mutex is being |
| 768 | // changed. |
| 769 | ::std::string PrintMutex(aos_mutex *mutex) { |
| 770 | ::std::stringstream s; |
| 771 | s << "aos_mutex(" << ::std::hex << mutex->futex; |
| 772 | |
| 773 | if (mutex->futex != 0) { |
| 774 | s << ":"; |
| 775 | if (mutex->futex & FUTEX_OWNER_DIED) { |
| 776 | s << "FUTEX_OWNER_DIED|"; |
| 777 | } |
| 778 | s << "tid=" << (mutex->futex & FUTEX_TID_MASK); |
| 779 | } |
| 780 | |
| 781 | s << ")"; |
| 782 | return s.str(); |
| 783 | } |
| 784 | |
| 785 | } // namespace |
| 786 | |
| 787 | void PrintLocklessQueueMemory(LocklessQueueMemory *memory) { |
| 788 | const size_t queue_size = memory->queue_size(); |
| 789 | ::std::cout << "LocklessQueueMemory (" << memory << ") {" << ::std::endl; |
| 790 | ::std::cout << " aos_mutex queue_setup_lock = " |
| 791 | << PrintMutex(&memory->queue_setup_lock) << ::std::endl; |
| 792 | ::std::cout << " ::std::atomic<bool> initialized = " << memory->initialized |
| 793 | << ::std::endl; |
| 794 | ::std::cout << " config {" << ::std::endl; |
| 795 | ::std::cout << " size_t num_watchers = " << memory->config.num_watchers |
| 796 | << ::std::endl; |
| 797 | ::std::cout << " size_t num_senders = " << memory->config.num_senders |
| 798 | << ::std::endl; |
| 799 | ::std::cout << " size_t queue_size = " << memory->config.queue_size |
| 800 | << ::std::endl; |
| 801 | ::std::cout << " size_t message_data_size = " |
| 802 | << memory->config.message_data_size << ::std::endl; |
| 803 | |
| 804 | ::std::cout << " AtomicQueueIndex next_queue_index = " |
| 805 | << memory->next_queue_index.Load(queue_size).DebugString() |
| 806 | << ::std::endl; |
| 807 | |
| 808 | ::std::cout << " }" << ::std::endl; |
| 809 | ::std::cout << " AtomicIndex queue[" << queue_size << "] {" << ::std::endl; |
| 810 | for (size_t i = 0; i < queue_size; ++i) { |
| 811 | ::std::cout << " [" << i << "] -> " |
| 812 | << memory->GetQueue(i)->Load().DebugString() << ::std::endl; |
| 813 | } |
| 814 | ::std::cout << " }" << ::std::endl; |
| 815 | ::std::cout << " Message messages[" << memory->num_messages() << "] {" |
| 816 | << ::std::endl; |
| 817 | for (size_t i = 0; i < memory->num_messages(); ++i) { |
| 818 | Message *m = memory->GetMessage(Index(i, i)); |
| 819 | ::std::cout << " [" << i << "] -> Message {" << ::std::endl; |
| 820 | ::std::cout << " Header {" << ::std::endl; |
| 821 | ::std::cout << " AtomicQueueIndex queue_index = " |
| 822 | << m->header.queue_index.Load(queue_size).DebugString() |
| 823 | << ::std::endl; |
| 824 | ::std::cout << " size_t length = " << m->header.length |
| 825 | << ::std::endl; |
| 826 | ::std::cout << " }" << ::std::endl; |
| 827 | ::std::cout << " data: {"; |
| 828 | |
| 829 | for (size_t j = 0; j < m->header.length; ++j) { |
| 830 | char data = m->data[j]; |
| 831 | if (j != 0) { |
| 832 | ::std::cout << " "; |
| 833 | } |
| 834 | if (::std::isprint(data)) { |
| 835 | ::std::cout << ::std::setfill(' ') << ::std::setw(2) << ::std::hex |
| 836 | << data; |
| 837 | } else { |
| 838 | ::std::cout << "0x" << ::std::setfill('0') << ::std::setw(2) |
| 839 | << ::std::hex << (static_cast<unsigned>(data) & 0xff); |
| 840 | } |
| 841 | } |
| 842 | ::std::cout << ::std::setfill(' ') << ::std::dec << "}" << ::std::endl; |
| 843 | ::std::cout << " }," << ::std::endl; |
| 844 | } |
| 845 | ::std::cout << " }" << ::std::endl; |
| 846 | |
| 847 | ::std::cout << " Sender senders[" << memory->num_senders() << "] {" << ::std::endl; |
| 848 | for (size_t i = 0; i < memory->num_senders(); ++i) { |
| 849 | Sender *s = memory->GetSender(i); |
| 850 | ::std::cout << " [" << i << "] -> Sender {" << ::std::endl; |
| 851 | ::std::cout << " aos_mutex tid = " << PrintMutex(&s->tid) |
| 852 | << ::std::endl; |
| 853 | ::std::cout << " AtomicIndex scratch_index = " |
| 854 | << s->scratch_index.Load().DebugString() << ::std::endl; |
| 855 | ::std::cout << " AtomicIndex to_replace = " |
| 856 | << s->to_replace.Load().DebugString() << ::std::endl; |
| 857 | ::std::cout << " }" << ::std::endl; |
| 858 | } |
| 859 | ::std::cout << " }" << ::std::endl; |
| 860 | |
| 861 | ::std::cout << " Watcher watchers[" << memory->num_watchers() << "] {" |
| 862 | << ::std::endl; |
| 863 | for (size_t i = 0; i < memory->num_watchers(); ++i) { |
| 864 | Watcher *w = memory->GetWatcher(i); |
| 865 | ::std::cout << " [" << i << "] -> Watcher {" << ::std::endl; |
| 866 | ::std::cout << " aos_mutex tid = " << PrintMutex(&w->tid) |
| 867 | << ::std::endl; |
| 868 | ::std::cout << " pid_t pid = " << w->pid << ::std::endl; |
| 869 | ::std::cout << " int priority = " << w->priority << ::std::endl; |
| 870 | ::std::cout << " }" << ::std::endl; |
| 871 | } |
| 872 | ::std::cout << " }" << ::std::endl; |
| 873 | |
| 874 | ::std::cout << "}" << ::std::endl; |
| 875 | } |
| 876 | |
| 877 | } // namespace ipc_lib |
| 878 | } // namespace aos |