Austin Schuh | 405fa6c | 2015-09-06 18:13:55 -0700 | [diff] [blame] | 1 | /* cddio.c: Basic Input and Output Procedures for cddlib |
| 2 | written by Komei Fukuda, fukuda@math.ethz.ch |
| 3 | Version 0.94h, April 30, 2015 |
| 4 | */ |
| 5 | |
| 6 | /* cddlib : C-library of the double description method for |
| 7 | computing all vertices and extreme rays of the polyhedron |
| 8 | P= {x : b - A x >= 0}. |
| 9 | Please read COPYING (GNU General Public Licence) and |
| 10 | the manual cddlibman.tex for detail. |
| 11 | */ |
| 12 | |
| 13 | #include "setoper.h" /* set operation library header (Ver. June 1, 2000 or later) */ |
| 14 | #include "cdd.h" |
| 15 | #include <stdio.h> |
| 16 | #include <stdlib.h> |
| 17 | #include <time.h> |
| 18 | #include <math.h> |
| 19 | #include <string.h> |
| 20 | |
| 21 | /* void dd_fread_rational_value (FILE *, mytype *); */ |
| 22 | void dd_SetLinearity(dd_MatrixPtr, char *); |
| 23 | |
| 24 | void dd_SetInputFile(FILE **f,dd_DataFileType inputfile,dd_ErrorType *Error) |
| 25 | { |
| 26 | int opened=0,stop,quit=0; |
| 27 | int i,dotpos=0,trial=0; |
| 28 | char ch; |
| 29 | char *tempname; |
| 30 | |
| 31 | |
| 32 | *Error=dd_NoError; |
| 33 | while (!opened && !quit) { |
| 34 | fprintf(stderr,"\n>> Input file: "); |
| 35 | scanf("%s",inputfile); |
| 36 | ch=getchar(); |
| 37 | stop=dd_FALSE; |
| 38 | for (i=0; i<dd_filenamelen && !stop; i++){ |
| 39 | ch=inputfile[i]; |
| 40 | switch (ch) { |
| 41 | case '.': |
| 42 | dotpos=i+1; |
| 43 | break; |
| 44 | case ';': case ' ': case '\0': case '\n': case '\t': |
| 45 | stop=dd_TRUE; |
| 46 | tempname=(char*)calloc(dd_filenamelen,sizeof(ch)); |
| 47 | strncpy(tempname,inputfile,i); |
| 48 | strcpy(inputfile,tempname); |
| 49 | free(tempname); |
| 50 | break; |
| 51 | } |
| 52 | } |
| 53 | if ( ( *f = fopen(inputfile,"r") )!= NULL) { |
| 54 | fprintf(stderr,"input file %s is open\n",inputfile); |
| 55 | opened=1; |
| 56 | *Error=dd_NoError; |
| 57 | } |
| 58 | else{ |
| 59 | fprintf(stderr,"The file %s not found\n",inputfile); |
| 60 | trial++; |
| 61 | if (trial>5) { |
| 62 | *Error=dd_IFileNotFound; |
| 63 | quit=1; |
| 64 | } |
| 65 | } |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | void dd_SetWriteFileName(dd_DataFileType inputfile, dd_DataFileType outfile, char cflag, dd_RepresentationType rep) |
| 70 | { |
| 71 | char *extension; |
| 72 | dd_DataFileType ifilehead=""; |
| 73 | int i,dotpos; |
| 74 | |
| 75 | switch (cflag) { |
| 76 | case 'o': |
| 77 | switch (rep) { |
| 78 | case dd_Generator: |
| 79 | extension=".ine"; break; /* output file for ine data */ |
| 80 | case dd_Inequality: |
| 81 | extension=".ext"; break; /* output file for ext data */ |
| 82 | default: |
| 83 | extension=".xxx";break; |
| 84 | } |
| 85 | break; |
| 86 | |
| 87 | case 'a': /* decide for output adjacence */ |
| 88 | if (rep==dd_Inequality) |
| 89 | extension=".ead"; /* adjacency file for ext data */ |
| 90 | else |
| 91 | extension=".iad"; /* adjacency file for ine data */ |
| 92 | break; |
| 93 | case 'i': /* decide for output incidence */ |
| 94 | if (rep==dd_Inequality) |
| 95 | extension=".ecd"; /* ext incidence file */ |
| 96 | else |
| 97 | extension=".icd"; /* ine incidence file */ |
| 98 | break; |
| 99 | case 'n': /* decide for input incidence */ |
| 100 | if (rep==dd_Inequality) |
| 101 | extension=".icd"; /* ine incidence file */ |
| 102 | else |
| 103 | extension=".ecd"; /* ext incidence file */ |
| 104 | break; |
| 105 | case 'j': /* decide for input adjacency */ |
| 106 | if (rep==dd_Inequality) |
| 107 | extension=".iad"; /* ine adjacency file */ |
| 108 | else |
| 109 | extension=".ead"; /* ext adjacency file */ |
| 110 | break; |
| 111 | case 'l': |
| 112 | extension=".ddl";break; /* log file */ |
| 113 | case 'd': |
| 114 | extension=".dex";break; /* decomposition output */ |
| 115 | case 'p': |
| 116 | extension="sub.ine";break; /* preprojection sub inequality file */ |
| 117 | case 'v': |
| 118 | extension=".solved";break; /* verify_input file */ |
| 119 | case 's': |
| 120 | extension=".lps";break; /* LP solution file */ |
| 121 | default: |
| 122 | extension=".xxx";break; |
| 123 | } |
| 124 | dotpos=-1; |
| 125 | for (i=0; i< strlen(inputfile); i++){ |
| 126 | if (inputfile[i]=='.') dotpos=i; |
| 127 | } |
| 128 | if (dotpos>1) strncpy(ifilehead, inputfile, dotpos); |
| 129 | else strcpy(ifilehead,inputfile); |
| 130 | if (strlen(inputfile)<=0) strcpy(ifilehead,"tempcdd"); |
| 131 | strcpy(outfile,ifilehead); |
| 132 | strcat(outfile,extension); |
| 133 | if (strcmp(inputfile, outfile)==0) { |
| 134 | strcpy(outfile,inputfile); |
| 135 | strcat(outfile,extension); |
| 136 | } |
| 137 | /* fprintf(stderr,"outfile name = %s\n",outfile); */ |
| 138 | } |
| 139 | |
| 140 | |
| 141 | dd_NumberType dd_GetNumberType(const char *line) |
| 142 | { |
| 143 | dd_NumberType nt; |
| 144 | |
| 145 | if (strncmp(line, "integer", 7)==0) { |
| 146 | nt = dd_Integer; |
| 147 | } |
| 148 | else if (strncmp(line, "rational", 8)==0) { |
| 149 | nt = dd_Rational; |
| 150 | } |
| 151 | else if (strncmp(line, "real", 4)==0) { |
| 152 | nt = dd_Real; |
| 153 | } |
| 154 | else { |
| 155 | nt=dd_Unknown; |
| 156 | } |
| 157 | return nt; |
| 158 | } |
| 159 | |
| 160 | void dd_ProcessCommandLine(FILE *f, dd_MatrixPtr M, const char *line) |
| 161 | { |
| 162 | char newline[dd_linelenmax]; |
| 163 | dd_colrange j; |
| 164 | mytype value; |
| 165 | |
| 166 | dd_init(value); |
| 167 | if (strncmp(line, "hull", 4)==0) { |
| 168 | M->representation = dd_Generator; |
| 169 | } |
| 170 | if (strncmp(line, "debug", 5)==0) { |
| 171 | dd_debug = dd_TRUE; |
| 172 | #ifdef GMPRATIONAL |
| 173 | ddf_debug = ddf_TRUE; |
| 174 | #endif |
| 175 | } |
| 176 | if (strncmp(line, "partial_enum", 12)==0 || |
| 177 | strncmp(line, "equality", 8)==0 || |
| 178 | strncmp(line, "linearity", 9)==0 ) { |
| 179 | fgets(newline,dd_linelenmax,f); |
| 180 | dd_SetLinearity(M,newline); |
| 181 | } |
| 182 | if (strncmp(line, "maximize", 8)==0 || |
| 183 | strncmp(line, "minimize", 8)==0) { |
| 184 | if (strncmp(line, "maximize", 8)==0) M->objective=dd_LPmax; |
| 185 | else M->objective=dd_LPmin; |
| 186 | for (j = 1; j <= M->colsize; j++) { |
| 187 | if (M->numbtype==dd_Real) { |
| 188 | #if !defined(GMPRATIONAL) |
| 189 | double rvalue; |
| 190 | fscanf(f, "%lf", &rvalue); |
| 191 | dd_set_d(value, rvalue); |
| 192 | #endif |
| 193 | } else { |
| 194 | dd_fread_rational_value (f, value); |
| 195 | } |
| 196 | dd_set(M->rowvec[j - 1],value); |
| 197 | if (dd_debug) {fprintf(stderr,"cost(%5ld) =",j); dd_WriteNumber(stderr,value);} |
| 198 | } /*of j*/ |
| 199 | } |
| 200 | dd_clear(value); |
| 201 | } |
| 202 | |
| 203 | dd_boolean dd_AppendMatrix2Poly(dd_PolyhedraPtr *poly, dd_MatrixPtr M) |
| 204 | { |
| 205 | dd_boolean success=dd_FALSE; |
| 206 | dd_MatrixPtr Mpoly,Mnew=NULL; |
| 207 | dd_ErrorType err; |
| 208 | |
| 209 | if ((*poly)!=NULL && (*poly)->m >=0 && (*poly)->d>=0 && |
| 210 | (*poly)->d==M->colsize && M->rowsize>0){ |
| 211 | Mpoly=dd_CopyInput(*poly); |
| 212 | Mnew=dd_AppendMatrix(Mpoly, M); |
| 213 | dd_FreePolyhedra(*poly); |
| 214 | *poly=dd_DDMatrix2Poly(Mnew,&err); |
| 215 | dd_FreeMatrix(Mpoly); |
| 216 | dd_FreeMatrix(Mnew); |
| 217 | if (err==dd_NoError) success=dd_TRUE; |
| 218 | } |
| 219 | return success; |
| 220 | } |
| 221 | |
| 222 | dd_MatrixPtr dd_MatrixCopy(dd_MatrixPtr M) |
| 223 | { |
| 224 | dd_MatrixPtr Mcopy=NULL; |
| 225 | dd_rowrange m; |
| 226 | dd_colrange d; |
| 227 | |
| 228 | m= M->rowsize; |
| 229 | d= M->colsize; |
| 230 | if (m >=0 && d >=0){ |
| 231 | Mcopy=dd_CreateMatrix(m, d); |
| 232 | dd_CopyAmatrix(Mcopy->matrix, M->matrix, m, d); |
| 233 | dd_CopyArow(Mcopy->rowvec, M->rowvec, d); |
| 234 | set_copy(Mcopy->linset,M->linset); |
| 235 | Mcopy->numbtype=M->numbtype; |
| 236 | Mcopy->representation=M->representation; |
| 237 | Mcopy->objective=M->objective; |
| 238 | } |
| 239 | return Mcopy; |
| 240 | } |
| 241 | |
| 242 | dd_MatrixPtr dd_CopyMatrix(dd_MatrixPtr M) |
| 243 | { |
| 244 | return dd_MatrixCopy(M); |
| 245 | } |
| 246 | |
| 247 | dd_MatrixPtr dd_MatrixNormalizedCopy(dd_MatrixPtr M) |
| 248 | { |
| 249 | dd_MatrixPtr Mcopy=NULL; |
| 250 | dd_rowrange m; |
| 251 | dd_colrange d; |
| 252 | |
| 253 | m= M->rowsize; |
| 254 | d= M->colsize; |
| 255 | if (m >=0 && d >=0){ |
| 256 | Mcopy=dd_CreateMatrix(m, d); |
| 257 | dd_CopyNormalizedAmatrix(Mcopy->matrix, M->matrix, m, d); |
| 258 | dd_CopyArow(Mcopy->rowvec, M->rowvec, d); |
| 259 | set_copy(Mcopy->linset,M->linset); |
| 260 | Mcopy->numbtype=M->numbtype; |
| 261 | Mcopy->representation=M->representation; |
| 262 | Mcopy->objective=M->objective; |
| 263 | } |
| 264 | return Mcopy; |
| 265 | } |
| 266 | |
| 267 | |
| 268 | dd_MatrixPtr dd_MatrixAppend(dd_MatrixPtr M1, dd_MatrixPtr M2) |
| 269 | { |
| 270 | dd_MatrixPtr M=NULL; |
| 271 | dd_rowrange i, m,m1,m2; |
| 272 | dd_colrange j, d,d1,d2; |
| 273 | |
| 274 | m1=M1->rowsize; |
| 275 | d1=M1->colsize; |
| 276 | m2=M2->rowsize; |
| 277 | d2=M2->colsize; |
| 278 | |
| 279 | m=m1+m2; |
| 280 | d=d1; |
| 281 | |
| 282 | if (d1>=0 && d1==d2 && m1>=0 && m2>=0){ |
| 283 | M=dd_CreateMatrix(m, d); |
| 284 | dd_CopyAmatrix(M->matrix, M1->matrix, m1, d); |
| 285 | dd_CopyArow(M->rowvec, M1->rowvec, d); |
| 286 | for (i=0; i<m1; i++){ |
| 287 | if (set_member(i+1,M1->linset)) set_addelem(M->linset,i+1); |
| 288 | } |
| 289 | for (i=0; i<m2; i++){ |
| 290 | for (j=0; j<d; j++) |
| 291 | dd_set(M->matrix[m1+i][j],M2->matrix[i][j]); |
| 292 | /* append the second matrix */ |
| 293 | if (set_member(i+1,M2->linset)) set_addelem(M->linset,m1+i+1); |
| 294 | } |
| 295 | M->numbtype=M1->numbtype; |
| 296 | } |
| 297 | return M; |
| 298 | } |
| 299 | |
| 300 | dd_MatrixPtr dd_MatrixNormalizedSortedCopy(dd_MatrixPtr M,dd_rowindex *newpos) /* 094 */ |
| 301 | { |
| 302 | /* Sort the rows of Amatrix lexicographically, and return a link to this sorted copy. |
| 303 | The vector newpos is allocated, where newpos[i] returns the new row index |
| 304 | of the original row i (i=1,...,M->rowsize). */ |
| 305 | dd_MatrixPtr Mcopy=NULL,Mnorm=NULL; |
| 306 | dd_rowrange m,i; |
| 307 | dd_colrange d; |
| 308 | dd_rowindex roworder; |
| 309 | |
| 310 | /* if (newpos!=NULL) free(newpos); */ |
| 311 | m= M->rowsize; |
| 312 | d= M->colsize; |
| 313 | roworder=(long *)calloc(m+1,sizeof(long)); |
| 314 | *newpos=(long *)calloc(m+1,sizeof(long)); |
| 315 | if (m >=0 && d >=0){ |
| 316 | Mnorm=dd_MatrixNormalizedCopy(M); |
| 317 | Mcopy=dd_CreateMatrix(m, d); |
| 318 | for(i=1; i<=m; i++) roworder[i]=i; |
| 319 | |
| 320 | dd_RandomPermutation(roworder, m, 123); |
| 321 | dd_QuickSort(roworder,1,m,Mnorm->matrix,d); |
| 322 | |
| 323 | dd_PermuteCopyAmatrix(Mcopy->matrix, Mnorm->matrix, m, d, roworder); |
| 324 | dd_CopyArow(Mcopy->rowvec, M->rowvec, d); |
| 325 | for(i=1; i<=m; i++) { |
| 326 | if (set_member(roworder[i],M->linset)) set_addelem(Mcopy->linset, i); |
| 327 | (*newpos)[roworder[i]]=i; |
| 328 | } |
| 329 | Mcopy->numbtype=M->numbtype; |
| 330 | Mcopy->representation=M->representation; |
| 331 | Mcopy->objective=M->objective; |
| 332 | dd_FreeMatrix(Mnorm); |
| 333 | } |
| 334 | free(roworder); |
| 335 | return Mcopy; |
| 336 | } |
| 337 | |
| 338 | dd_MatrixPtr dd_MatrixUniqueCopy(dd_MatrixPtr M,dd_rowindex *newpos) |
| 339 | { |
| 340 | /* Remove row duplicates, and return a link to this sorted copy. |
| 341 | Linearity rows have priority over the other rows. |
| 342 | It is better to call this after sorting with dd_MatrixNormalizedSortedCopy. |
| 343 | The vector newpos is allocated, where *newpos[i] returns the new row index |
| 344 | of the original row i (i=1,...,M->rowsize). *newpos[i] is negative if the original |
| 345 | row is dominated by -*newpos[i] and eliminated in the new copy. |
| 346 | */ |
| 347 | dd_MatrixPtr Mcopy=NULL; |
| 348 | dd_rowrange m,i,uniqrows; |
| 349 | dd_rowset preferredrows; |
| 350 | dd_colrange d; |
| 351 | dd_rowindex roworder; |
| 352 | |
| 353 | /* if (newpos!=NULL) free(newpos); */ |
| 354 | m= M->rowsize; |
| 355 | d= M->colsize; |
| 356 | preferredrows=M->linset; |
| 357 | roworder=(long *)calloc(m+1,sizeof(long)); |
| 358 | if (m >=0 && d >=0){ |
| 359 | for(i=1; i<=m; i++) roworder[i]=i; |
| 360 | dd_UniqueRows(roworder, 1, m, M->matrix, d,preferredrows, &uniqrows); |
| 361 | |
| 362 | Mcopy=dd_CreateMatrix(uniqrows, d); |
| 363 | dd_PermutePartialCopyAmatrix(Mcopy->matrix, M->matrix, m, d, roworder,1,m); |
| 364 | dd_CopyArow(Mcopy->rowvec, M->rowvec, d); |
| 365 | for(i=1; i<=m; i++) { |
| 366 | if (roworder[i]>0 && set_member(i,M->linset)) set_addelem(Mcopy->linset, roworder[i]); |
| 367 | } |
| 368 | Mcopy->numbtype=M->numbtype; |
| 369 | Mcopy->representation=M->representation; |
| 370 | Mcopy->objective=M->objective; |
| 371 | } |
| 372 | *newpos=roworder; |
| 373 | return Mcopy; |
| 374 | } |
| 375 | |
| 376 | |
| 377 | dd_MatrixPtr dd_MatrixNormalizedSortedUniqueCopy(dd_MatrixPtr M,dd_rowindex *newpos) /* 094 */ |
| 378 | { |
| 379 | /* Sort and remove row duplicates, and return a link to this sorted copy. |
| 380 | Linearity rows have priority over the other rows. |
| 381 | It is better to call this after sorting with dd_MatrixNormalizedSortedCopy. |
| 382 | The vector newpos is allocated, where *newpos[i] returns the new row index |
| 383 | of the original row i (i=1,...,M->rowsize). *newpos[i] is negative if the original |
| 384 | row is dominated by -*newpos[i] and eliminated in the new copy. |
| 385 | */ |
| 386 | dd_MatrixPtr M1=NULL,M2=NULL; |
| 387 | dd_rowrange m,i; |
| 388 | dd_colrange d; |
| 389 | dd_rowindex newpos1=NULL,newpos1r=NULL,newpos2=NULL; |
| 390 | |
| 391 | /* if (newpos!=NULL) free(newpos); */ |
| 392 | m= M->rowsize; |
| 393 | d= M->colsize; |
| 394 | *newpos=(long *)calloc(m+1,sizeof(long)); |
| 395 | newpos1r=(long *)calloc(m+1,sizeof(long)); |
| 396 | if (m>=0 && d>=0){ |
| 397 | M1=dd_MatrixNormalizedSortedCopy(M,&newpos1); |
| 398 | for (i=1; i<=m;i++) newpos1r[newpos1[i]]=i; /* reverse of newpos1 */ |
| 399 | M2=dd_MatrixUniqueCopy(M1,&newpos2); |
| 400 | set_emptyset(M2->linset); |
| 401 | for(i=1; i<=m; i++) { |
| 402 | if (newpos2[newpos1[i]]>0){ |
| 403 | printf("newpos1[%ld]=%ld, newpos2[newpos1[%ld]]=%ld\n",i,newpos1[i], i,newpos2[newpos1[i]]); |
| 404 | if (set_member(i,M->linset)) set_addelem(M2->linset, newpos2[newpos1[i]]); |
| 405 | (*newpos)[i]=newpos2[newpos1[i]]; |
| 406 | } else { |
| 407 | (*newpos)[i]=-newpos1r[-newpos2[newpos1[i]]]; |
| 408 | } |
| 409 | } |
| 410 | dd_FreeMatrix(M1);free(newpos1);free(newpos2);free(newpos1r); |
| 411 | } |
| 412 | |
| 413 | return M2; |
| 414 | } |
| 415 | |
| 416 | dd_MatrixPtr dd_MatrixSortedUniqueCopy(dd_MatrixPtr M,dd_rowindex *newpos) /* 094 */ |
| 417 | { |
| 418 | /* Same as dd_MatrixNormalizedSortedUniqueCopy except that it returns a unnormalized origial data |
| 419 | with original ordering. |
| 420 | */ |
| 421 | dd_MatrixPtr M1=NULL,M2=NULL; |
| 422 | dd_rowrange m,i,k,ii; |
| 423 | dd_colrange d; |
| 424 | dd_rowindex newpos1=NULL,newpos1r=NULL,newpos2=NULL; |
| 425 | |
| 426 | /* if (newpos!=NULL) free(newpos); */ |
| 427 | m= M->rowsize; |
| 428 | d= M->colsize; |
| 429 | *newpos=(long *)calloc(m+1,sizeof(long)); |
| 430 | newpos1r=(long *)calloc(m+1,sizeof(long)); |
| 431 | if (m>=0 && d>=0){ |
| 432 | M1=dd_MatrixNormalizedSortedCopy(M,&newpos1); |
| 433 | for (i=1; i<=m;i++) newpos1r[newpos1[i]]=i; /* reverse of newpos1 */ |
| 434 | M2=dd_MatrixUniqueCopy(M1,&newpos2); |
| 435 | dd_FreeMatrix(M1); |
| 436 | set_emptyset(M2->linset); |
| 437 | for(i=1; i<=m; i++) { |
| 438 | if (newpos2[newpos1[i]]>0){ |
| 439 | if (set_member(i,M->linset)) set_addelem(M2->linset, newpos2[newpos1[i]]); |
| 440 | (*newpos)[i]=newpos2[newpos1[i]]; |
| 441 | } else { |
| 442 | (*newpos)[i]=-newpos1r[-newpos2[newpos1[i]]]; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | ii=0; |
| 447 | set_emptyset(M2->linset); |
| 448 | for (i = 1; i<=m ; i++) { |
| 449 | k=(*newpos)[i]; |
| 450 | if (k>0) { |
| 451 | ii+=1; |
| 452 | (*newpos)[i]=ii; |
| 453 | dd_CopyArow(M2->matrix[ii-1],M->matrix[i-1],d); |
| 454 | if (set_member(i,M->linset)) set_addelem(M2->linset, ii); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | free(newpos1);free(newpos2);free(newpos1r); |
| 459 | } |
| 460 | |
| 461 | return M2; |
| 462 | } |
| 463 | |
| 464 | dd_MatrixPtr dd_AppendMatrix(dd_MatrixPtr M1, dd_MatrixPtr M2) |
| 465 | { |
| 466 | return dd_MatrixAppend(M1,M2); |
| 467 | } |
| 468 | |
| 469 | int dd_MatrixAppendTo(dd_MatrixPtr *M1, dd_MatrixPtr M2) |
| 470 | { |
| 471 | dd_MatrixPtr M=NULL; |
| 472 | dd_rowrange i, m,m1,m2; |
| 473 | dd_colrange j, d,d1,d2; |
| 474 | dd_boolean success=0; |
| 475 | |
| 476 | m1=(*M1)->rowsize; |
| 477 | d1=(*M1)->colsize; |
| 478 | m2=M2->rowsize; |
| 479 | d2=M2->colsize; |
| 480 | |
| 481 | m=m1+m2; |
| 482 | d=d1; |
| 483 | |
| 484 | if (d1>=0 && d1==d2 && m1>=0 && m2>=0){ |
| 485 | M=dd_CreateMatrix(m, d); |
| 486 | dd_CopyAmatrix(M->matrix, (*M1)->matrix, m1, d); |
| 487 | dd_CopyArow(M->rowvec, (*M1)->rowvec, d); |
| 488 | for (i=0; i<m1; i++){ |
| 489 | if (set_member(i+1,(*M1)->linset)) set_addelem(M->linset,i+1); |
| 490 | } |
| 491 | for (i=0; i<m2; i++){ |
| 492 | for (j=0; j<d; j++) |
| 493 | dd_set(M->matrix[m1+i][j],M2->matrix[i][j]); |
| 494 | /* append the second matrix */ |
| 495 | if (set_member(i+1,M2->linset)) set_addelem(M->linset,m1+i+1); |
| 496 | } |
| 497 | M->numbtype=(*M1)->numbtype; |
| 498 | dd_FreeMatrix(*M1); |
| 499 | *M1=M; |
| 500 | success=1; |
| 501 | } |
| 502 | return success; |
| 503 | } |
| 504 | |
| 505 | int dd_MatrixRowRemove(dd_MatrixPtr *M, dd_rowrange r) /* 092 */ |
| 506 | { |
| 507 | dd_rowrange i,m; |
| 508 | dd_colrange d; |
| 509 | dd_boolean success=0; |
| 510 | |
| 511 | m=(*M)->rowsize; |
| 512 | d=(*M)->colsize; |
| 513 | |
| 514 | if (r >= 1 && r <=m){ |
| 515 | (*M)->rowsize=m-1; |
| 516 | dd_FreeArow(d, (*M)->matrix[r-1]); |
| 517 | set_delelem((*M)->linset,r); |
| 518 | /* slide the row headers */ |
| 519 | for (i=r; i<m; i++){ |
| 520 | (*M)->matrix[i-1]=(*M)->matrix[i]; |
| 521 | if (set_member(i+1, (*M)->linset)){ |
| 522 | set_delelem((*M)->linset,i+1); |
| 523 | set_addelem((*M)->linset,i); |
| 524 | } |
| 525 | } |
| 526 | success=1; |
| 527 | } |
| 528 | return success; |
| 529 | } |
| 530 | |
| 531 | int dd_MatrixRowRemove2(dd_MatrixPtr *M, dd_rowrange r, dd_rowindex *newpos) /* 094 */ |
| 532 | { |
| 533 | dd_rowrange i,m; |
| 534 | dd_colrange d; |
| 535 | dd_boolean success=0; |
| 536 | dd_rowindex roworder; |
| 537 | |
| 538 | m=(*M)->rowsize; |
| 539 | d=(*M)->colsize; |
| 540 | |
| 541 | if (r >= 1 && r <=m){ |
| 542 | roworder=(long *)calloc(m+1,sizeof(long)); |
| 543 | (*M)->rowsize=m-1; |
| 544 | dd_FreeArow(d, (*M)->matrix[r-1]); |
| 545 | set_delelem((*M)->linset,r); |
| 546 | /* slide the row headers */ |
| 547 | for (i=1; i<r; i++) roworder[i]=i; |
| 548 | roworder[r]=0; /* meaning it is removed */ |
| 549 | for (i=r; i<m; i++){ |
| 550 | (*M)->matrix[i-1]=(*M)->matrix[i]; |
| 551 | roworder[i+1]=i; |
| 552 | if (set_member(i+1, (*M)->linset)){ |
| 553 | set_delelem((*M)->linset,i+1); |
| 554 | set_addelem((*M)->linset,i); |
| 555 | } |
| 556 | } |
| 557 | success=1; |
| 558 | } |
| 559 | return success; |
| 560 | } |
| 561 | |
| 562 | dd_MatrixPtr dd_MatrixSubmatrix(dd_MatrixPtr M, dd_rowset delset) /* 092 */ |
| 563 | { |
| 564 | dd_MatrixPtr Msub=NULL; |
| 565 | dd_rowrange i,isub=1, m,msub; |
| 566 | dd_colrange d; |
| 567 | |
| 568 | m= M->rowsize; |
| 569 | d= M->colsize; |
| 570 | msub=m; |
| 571 | if (m >=0 && d >=0){ |
| 572 | for (i=1; i<=m; i++) { |
| 573 | if (set_member(i,delset)) msub-=1; |
| 574 | } |
| 575 | Msub=dd_CreateMatrix(msub, d); |
| 576 | for (i=1; i<=m; i++){ |
| 577 | if (!set_member(i,delset)){ |
| 578 | dd_CopyArow(Msub->matrix[isub-1], M->matrix[i-1], d); |
| 579 | if (set_member(i, M->linset)){ |
| 580 | set_addelem(Msub->linset,isub); |
| 581 | } |
| 582 | isub++; |
| 583 | } |
| 584 | } |
| 585 | dd_CopyArow(Msub->rowvec, M->rowvec, d); |
| 586 | Msub->numbtype=M->numbtype; |
| 587 | Msub->representation=M->representation; |
| 588 | Msub->objective=M->objective; |
| 589 | } |
| 590 | return Msub; |
| 591 | } |
| 592 | |
| 593 | dd_MatrixPtr dd_MatrixSubmatrix2(dd_MatrixPtr M, dd_rowset delset,dd_rowindex *newpos) /* 092 */ |
| 594 | { /* returns a pointer to a new matrix which is a submatrix of M with rows in delset |
| 595 | removed. *newpos[i] returns the position of the original row i in the new matrix. |
| 596 | It is -1 if and only if it is deleted. |
| 597 | */ |
| 598 | |
| 599 | dd_MatrixPtr Msub=NULL; |
| 600 | dd_rowrange i,isub=1, m,msub; |
| 601 | dd_colrange d; |
| 602 | dd_rowindex roworder; |
| 603 | |
| 604 | m= M->rowsize; |
| 605 | d= M->colsize; |
| 606 | msub=m; |
| 607 | if (m >=0 && d >=0){ |
| 608 | roworder=(long *)calloc(m+1,sizeof(long)); |
| 609 | for (i=1; i<=m; i++) { |
| 610 | if (set_member(i,delset)) msub-=1; |
| 611 | } |
| 612 | Msub=dd_CreateMatrix(msub, d); |
| 613 | for (i=1; i<=m; i++){ |
| 614 | if (set_member(i,delset)){ |
| 615 | roworder[i]=0; /* zero means the row i is removed */ |
| 616 | } else { |
| 617 | dd_CopyArow(Msub->matrix[isub-1], M->matrix[i-1], d); |
| 618 | if (set_member(i, M->linset)){ |
| 619 | set_addelem(Msub->linset,isub); |
| 620 | } |
| 621 | roworder[i]=isub; |
| 622 | isub++; |
| 623 | } |
| 624 | } |
| 625 | *newpos=roworder; |
| 626 | dd_CopyArow(Msub->rowvec, M->rowvec, d); |
| 627 | Msub->numbtype=M->numbtype; |
| 628 | Msub->representation=M->representation; |
| 629 | Msub->objective=M->objective; |
| 630 | } |
| 631 | return Msub; |
| 632 | } |
| 633 | |
| 634 | |
| 635 | dd_MatrixPtr dd_MatrixSubmatrix2L(dd_MatrixPtr M, dd_rowset delset,dd_rowindex *newpos) /* 094 */ |
| 636 | { /* This is same as dd_MatrixSubmatrix2 except that the linearity rows will be shifted up |
| 637 | so that they are at the top of the matrix. |
| 638 | */ |
| 639 | dd_MatrixPtr Msub=NULL; |
| 640 | dd_rowrange i,iL, iI, m,msub; |
| 641 | dd_colrange d; |
| 642 | dd_rowindex roworder; |
| 643 | |
| 644 | m= M->rowsize; |
| 645 | d= M->colsize; |
| 646 | msub=m; |
| 647 | if (m >=0 && d >=0){ |
| 648 | roworder=(long *)calloc(m+1,sizeof(long)); |
| 649 | for (i=1; i<=m; i++) { |
| 650 | if (set_member(i,delset)) msub-=1; |
| 651 | } |
| 652 | Msub=dd_CreateMatrix(msub, d); |
| 653 | iL=1; iI=set_card(M->linset)+1; /* starting positions */ |
| 654 | for (i=1; i<=m; i++){ |
| 655 | if (set_member(i,delset)){ |
| 656 | roworder[i]=0; /* zero means the row i is removed */ |
| 657 | } else { |
| 658 | if (set_member(i,M->linset)){ |
| 659 | dd_CopyArow(Msub->matrix[iL-1], M->matrix[i-1], d); |
| 660 | set_delelem(Msub->linset,i); |
| 661 | set_addelem(Msub->linset,iL); |
| 662 | roworder[i]=iL; |
| 663 | iL+=1; |
| 664 | } else { |
| 665 | dd_CopyArow(Msub->matrix[iI-1], M->matrix[i-1], d); |
| 666 | roworder[i]=iI; |
| 667 | iI+=1; |
| 668 | } |
| 669 | } |
| 670 | } |
| 671 | *newpos=roworder; |
| 672 | dd_CopyArow(Msub->rowvec, M->rowvec, d); |
| 673 | Msub->numbtype=M->numbtype; |
| 674 | Msub->representation=M->representation; |
| 675 | Msub->objective=M->objective; |
| 676 | } |
| 677 | return Msub; |
| 678 | } |
| 679 | |
| 680 | int dd_MatrixRowsRemove(dd_MatrixPtr *M, dd_rowset delset) /* 094 */ |
| 681 | { |
| 682 | dd_MatrixPtr Msub=NULL; |
| 683 | int success; |
| 684 | |
| 685 | Msub=dd_MatrixSubmatrix(*M, delset); |
| 686 | dd_FreeMatrix(*M); |
| 687 | *M=Msub; |
| 688 | success=1; |
| 689 | return success; |
| 690 | } |
| 691 | |
| 692 | int dd_MatrixRowsRemove2(dd_MatrixPtr *M, dd_rowset delset,dd_rowindex *newpos) /* 094 */ |
| 693 | { |
| 694 | dd_MatrixPtr Msub=NULL; |
| 695 | int success; |
| 696 | |
| 697 | Msub=dd_MatrixSubmatrix2(*M, delset,newpos); |
| 698 | dd_FreeMatrix(*M); |
| 699 | *M=Msub; |
| 700 | success=1; |
| 701 | return success; |
| 702 | } |
| 703 | |
| 704 | int dd_MatrixShiftupLinearity(dd_MatrixPtr *M,dd_rowindex *newpos) /* 094 */ |
| 705 | { |
| 706 | dd_MatrixPtr Msub=NULL; |
| 707 | int success; |
| 708 | dd_rowset delset; |
| 709 | |
| 710 | set_initialize(&delset,(*M)->rowsize); /* emptyset */ |
| 711 | Msub=dd_MatrixSubmatrix2L(*M, delset,newpos); |
| 712 | dd_FreeMatrix(*M); |
| 713 | *M=Msub; |
| 714 | |
| 715 | set_free(delset); |
| 716 | success=1; |
| 717 | return success; |
| 718 | } |
| 719 | |
| 720 | dd_PolyhedraPtr dd_CreatePolyhedraData(dd_rowrange m, dd_colrange d) |
| 721 | { |
| 722 | dd_rowrange i; |
| 723 | dd_PolyhedraPtr poly=NULL; |
| 724 | |
| 725 | poly=(dd_PolyhedraPtr) malloc (sizeof(dd_PolyhedraType)); |
| 726 | poly->child =NULL; /* this links the homogenized cone data */ |
| 727 | poly->m =m; |
| 728 | poly->d =d; |
| 729 | poly->n =-1; /* the size of output is not known */ |
| 730 | poly->m_alloc =m+2; /* the allocated row size of matrix A */ |
| 731 | poly->d_alloc =d; /* the allocated col size of matrix A */ |
| 732 | poly->ldim =0; /* initialize the linearity dimension */ |
| 733 | poly->numbtype=dd_Real; |
| 734 | dd_InitializeAmatrix(poly->m_alloc,poly->d_alloc,&(poly->A)); |
| 735 | dd_InitializeArow(d,&(poly->c)); /* cost vector */ |
| 736 | poly->representation =dd_Inequality; |
| 737 | poly->homogeneous =dd_FALSE; |
| 738 | |
| 739 | poly->EqualityIndex=(int *)calloc(m+2, sizeof(int)); |
| 740 | /* size increased to m+2 in 092b because it is used by the child cone, |
| 741 | This is a bug fix suggested by Thao Dang. */ |
| 742 | /* ith component is 1 if it is equality, -1 if it is strict inequality, 0 otherwise. */ |
| 743 | for (i = 0; i <= m+1; i++) poly->EqualityIndex[i]=0; |
| 744 | |
| 745 | poly->IsEmpty = -1; /* initially set to -1, neither TRUE nor FALSE, meaning unknown */ |
| 746 | |
| 747 | poly->NondegAssumed = dd_FALSE; |
| 748 | poly->InitBasisAtBottom = dd_FALSE; |
| 749 | poly->RestrictedEnumeration = dd_FALSE; |
| 750 | poly->RelaxedEnumeration = dd_FALSE; |
| 751 | |
| 752 | poly->AincGenerated=dd_FALSE; /* Ainc is a set array to store the input incidence. */ |
| 753 | |
| 754 | return poly; |
| 755 | } |
| 756 | |
| 757 | dd_boolean dd_InitializeConeData(dd_rowrange m, dd_colrange d, dd_ConePtr *cone) |
| 758 | { |
| 759 | dd_boolean success=dd_TRUE; |
| 760 | dd_colrange j; |
| 761 | |
| 762 | (*cone)=(dd_ConePtr)calloc(1, sizeof(dd_ConeType)); |
| 763 | |
| 764 | /* INPUT: A given representation of a cone: inequality */ |
| 765 | (*cone)->m=m; |
| 766 | (*cone)->d=d; |
| 767 | (*cone)->m_alloc=m+2; /* allocated row size of matrix A */ |
| 768 | (*cone)->d_alloc=d; /* allocated col size of matrix A, B and Bsave */ |
| 769 | (*cone)->numbtype=dd_Real; |
| 770 | (*cone)->parent=NULL; |
| 771 | |
| 772 | /* CONTROL: variables to control computation */ |
| 773 | (*cone)->Iteration=0; |
| 774 | |
| 775 | (*cone)->HalfspaceOrder=dd_LexMin; |
| 776 | |
| 777 | (*cone)->ArtificialRay=NULL; |
| 778 | (*cone)->FirstRay=NULL; |
| 779 | (*cone)->LastRay=NULL; /* The second description: Generator */ |
| 780 | (*cone)->PosHead=NULL; |
| 781 | (*cone)->ZeroHead=NULL; |
| 782 | (*cone)->NegHead=NULL; |
| 783 | (*cone)->PosLast=NULL; |
| 784 | (*cone)->ZeroLast=NULL; |
| 785 | (*cone)->NegLast=NULL; |
| 786 | (*cone)->RecomputeRowOrder = dd_TRUE; |
| 787 | (*cone)->PreOrderedRun = dd_FALSE; |
| 788 | set_initialize(&((*cone)->GroundSet),(*cone)->m_alloc); |
| 789 | set_initialize(&((*cone)->EqualitySet),(*cone)->m_alloc); |
| 790 | set_initialize(&((*cone)->NonequalitySet),(*cone)->m_alloc); |
| 791 | set_initialize(&((*cone)->AddedHalfspaces),(*cone)->m_alloc); |
| 792 | set_initialize(&((*cone)->WeaklyAddedHalfspaces),(*cone)->m_alloc); |
| 793 | set_initialize(&((*cone)->InitialHalfspaces),(*cone)->m_alloc); |
| 794 | (*cone)->RayCount=0; |
| 795 | (*cone)->FeasibleRayCount=0; |
| 796 | (*cone)->WeaklyFeasibleRayCount=0; |
| 797 | (*cone)->TotalRayCount=0; |
| 798 | (*cone)->ZeroRayCount=0; |
| 799 | (*cone)->EdgeCount=0; |
| 800 | (*cone)->TotalEdgeCount=0; |
| 801 | (*cone)->count_int=0; |
| 802 | (*cone)->count_int_good=0; |
| 803 | (*cone)->count_int_bad=0; |
| 804 | (*cone)->rseed=1; /* random seed for random row permutation */ |
| 805 | |
| 806 | dd_InitializeBmatrix((*cone)->d_alloc, &((*cone)->B)); |
| 807 | dd_InitializeBmatrix((*cone)->d_alloc, &((*cone)->Bsave)); |
| 808 | dd_InitializeAmatrix((*cone)->m_alloc,(*cone)->d_alloc,&((*cone)->A)); |
| 809 | |
| 810 | (*cone)->Edges |
| 811 | =(dd_AdjacencyType**) calloc((*cone)->m_alloc,sizeof(dd_AdjacencyType*)); |
| 812 | for (j=0; j<(*cone)->m_alloc; j++) (*cone)->Edges[j]=NULL; /* 094h */ |
| 813 | (*cone)->InitialRayIndex=(long*)calloc(d+1,sizeof(long)); |
| 814 | (*cone)->OrderVector=(long*)calloc((*cone)->m_alloc+1,sizeof(long)); |
| 815 | |
| 816 | (*cone)->newcol=(long*)calloc(((*cone)->d)+1,sizeof(long)); |
| 817 | for (j=0; j<=(*cone)->d; j++) (*cone)->newcol[j]=j; /* identity map, initially */ |
| 818 | (*cone)->LinearityDim = -2; /* -2 if it is not computed */ |
| 819 | (*cone)->ColReduced = dd_FALSE; |
| 820 | (*cone)->d_orig = d; |
| 821 | |
| 822 | /* STATES: variables to represent current state. */ |
| 823 | /*(*cone)->Error; |
| 824 | (*cone)->CompStatus; |
| 825 | (*cone)->starttime; |
| 826 | (*cone)->endtime; |
| 827 | */ |
| 828 | |
| 829 | return success; |
| 830 | } |
| 831 | |
| 832 | dd_ConePtr dd_ConeDataLoad(dd_PolyhedraPtr poly) |
| 833 | { |
| 834 | dd_ConePtr cone=NULL; |
| 835 | dd_colrange d,j; |
| 836 | dd_rowrange m,i; |
| 837 | |
| 838 | m=poly->m; |
| 839 | d=poly->d; |
| 840 | if (!(poly->homogeneous) && poly->representation==dd_Inequality){ |
| 841 | m=poly->m+1; |
| 842 | } |
| 843 | poly->m1=m; |
| 844 | |
| 845 | dd_InitializeConeData(m, d, &cone); |
| 846 | cone->representation=poly->representation; |
| 847 | |
| 848 | /* Points to the original polyhedra data, and reversely */ |
| 849 | cone->parent=poly; |
| 850 | poly->child=cone; |
| 851 | |
| 852 | for (i=1; i<=poly->m; i++) |
| 853 | for (j=1; j<=cone->d; j++) |
| 854 | dd_set(cone->A[i-1][j-1],poly->A[i-1][j-1]); |
| 855 | |
| 856 | if (poly->representation==dd_Inequality && !(poly->homogeneous)){ |
| 857 | dd_set(cone->A[m-1][0],dd_one); |
| 858 | for (j=2; j<=d; j++) dd_set(cone->A[m-1][j-1],dd_purezero); |
| 859 | } |
| 860 | |
| 861 | return cone; |
| 862 | } |
| 863 | |
| 864 | void dd_SetLinearity(dd_MatrixPtr M, char *line) |
| 865 | { |
| 866 | int i=0; |
| 867 | dd_rowrange eqsize,var; |
| 868 | char *next; |
| 869 | const char ct[]=", "; /* allows separators "," and " ". */ |
| 870 | |
| 871 | next=strtok(line,ct); |
| 872 | eqsize=atol(next); |
| 873 | while (i < eqsize && (next=strtok(NULL,ct))!=NULL) { |
| 874 | var=atol(next); |
| 875 | set_addelem(M->linset,var); i++; |
| 876 | } |
| 877 | if (i!=eqsize) { |
| 878 | fprintf(stderr,"* Warning: there are inconsistencies in linearity setting.\n"); |
| 879 | } |
| 880 | return; |
| 881 | } |
| 882 | |
| 883 | dd_MatrixPtr dd_PolyFile2Matrix (FILE *f, dd_ErrorType *Error) |
| 884 | { |
| 885 | dd_MatrixPtr M=NULL; |
| 886 | dd_rowrange m_input,i; |
| 887 | dd_colrange d_input,j; |
| 888 | dd_RepresentationType rep=dd_Inequality; |
| 889 | mytype value; |
| 890 | dd_boolean found=dd_FALSE, newformat=dd_FALSE, successful=dd_FALSE, linearity=dd_FALSE; |
| 891 | char command[dd_linelenmax], comsave[dd_linelenmax], numbtype[dd_wordlenmax]; |
| 892 | dd_NumberType NT; |
| 893 | #if !defined(GMPRATIONAL) |
| 894 | double rvalue; |
| 895 | #endif |
| 896 | |
| 897 | dd_init(value); |
| 898 | (*Error)=dd_NoError; |
| 899 | while (!found) |
| 900 | { |
| 901 | if (fscanf(f,"%s",command)==EOF) { |
| 902 | (*Error)=dd_ImproperInputFormat; |
| 903 | goto _L99; |
| 904 | } |
| 905 | else { |
| 906 | if (strncmp(command, "V-representation", 16)==0) { |
| 907 | rep=dd_Generator; newformat=dd_TRUE; |
| 908 | } |
| 909 | if (strncmp(command, "H-representation", 16)==0){ |
| 910 | rep=dd_Inequality; newformat=dd_TRUE; |
| 911 | } |
| 912 | if (strncmp(command, "partial_enum", 12)==0 || |
| 913 | strncmp(command, "equality", 8)==0 || |
| 914 | strncmp(command, "linearity", 9)==0 ) { |
| 915 | linearity=dd_TRUE; |
| 916 | fgets(comsave,dd_linelenmax,f); |
| 917 | } |
| 918 | if (strncmp(command, "begin", 5)==0) found=dd_TRUE; |
| 919 | } |
| 920 | } |
| 921 | fscanf(f, "%ld %ld %s", &m_input, &d_input, numbtype); |
| 922 | fprintf(stderr,"size = %ld x %ld\nNumber Type = %s\n", m_input, d_input, numbtype); |
| 923 | NT=dd_GetNumberType(numbtype); |
| 924 | if (NT==dd_Unknown) { |
| 925 | (*Error)=dd_ImproperInputFormat; |
| 926 | goto _L99; |
| 927 | } |
| 928 | M=dd_CreateMatrix(m_input, d_input); |
| 929 | M->representation=rep; |
| 930 | M->numbtype=NT; |
| 931 | |
| 932 | for (i = 1; i <= m_input; i++) { |
| 933 | for (j = 1; j <= d_input; j++) { |
| 934 | if (NT==dd_Real) { |
| 935 | #if defined GMPRATIONAL |
| 936 | *Error=dd_NoRealNumberSupport; |
| 937 | goto _L99; |
| 938 | #else |
| 939 | fscanf(f, "%lf", &rvalue); |
| 940 | dd_set_d(value, rvalue); |
| 941 | #endif |
| 942 | } else { |
| 943 | dd_fread_rational_value (f, value); |
| 944 | } |
| 945 | dd_set(M->matrix[i-1][j - 1],value); |
| 946 | if (dd_debug) {fprintf(stderr,"a(%3ld,%5ld) = ",i,j); dd_WriteNumber(stderr,value);} |
| 947 | } /*of j*/ |
| 948 | } /*of i*/ |
| 949 | if (fscanf(f,"%s",command)==EOF) { |
| 950 | (*Error)=dd_ImproperInputFormat; |
| 951 | goto _L99; |
| 952 | } |
| 953 | else if (strncmp(command, "end", 3)!=0) { |
| 954 | if (dd_debug) fprintf(stderr,"'end' missing or illegal extra data: %s\n",command); |
| 955 | (*Error)=dd_ImproperInputFormat; |
| 956 | goto _L99; |
| 957 | } |
| 958 | |
| 959 | successful=dd_TRUE; |
| 960 | if (linearity) { |
| 961 | dd_SetLinearity(M,comsave); |
| 962 | } |
| 963 | while (!feof(f)) { |
| 964 | fscanf(f,"%s", command); |
| 965 | dd_ProcessCommandLine(f, M, command); |
| 966 | fgets(command,dd_linelenmax,f); /* skip the CR/LF */ |
| 967 | } |
| 968 | |
| 969 | _L99: ; |
| 970 | dd_clear(value); |
| 971 | /* if (f!=NULL) fclose(f); */ |
| 972 | return M; |
| 973 | } |
| 974 | |
| 975 | |
| 976 | dd_PolyhedraPtr dd_DDMatrix2Poly(dd_MatrixPtr M, dd_ErrorType *err) |
| 977 | { |
| 978 | dd_rowrange i; |
| 979 | dd_colrange j; |
| 980 | dd_PolyhedraPtr poly=NULL; |
| 981 | |
| 982 | *err=dd_NoError; |
| 983 | if (M->rowsize<0 || M->colsize<0){ |
| 984 | *err=dd_NegativeMatrixSize; |
| 985 | goto _L99; |
| 986 | } |
| 987 | poly=dd_CreatePolyhedraData(M->rowsize, M->colsize); |
| 988 | poly->representation=M->representation; |
| 989 | poly->homogeneous=dd_TRUE; |
| 990 | |
| 991 | for (i = 1; i <= M->rowsize; i++) { |
| 992 | if (set_member(i, M->linset)) { |
| 993 | poly->EqualityIndex[i]=1; |
| 994 | } |
| 995 | for (j = 1; j <= M->colsize; j++) { |
| 996 | dd_set(poly->A[i-1][j-1], M->matrix[i-1][j-1]); |
| 997 | if (j==1 && dd_Nonzero(M->matrix[i-1][j-1])) poly->homogeneous = dd_FALSE; |
| 998 | } /*of j*/ |
| 999 | } /*of i*/ |
| 1000 | dd_DoubleDescription(poly,err); |
| 1001 | _L99: |
| 1002 | return poly; |
| 1003 | } |
| 1004 | |
| 1005 | dd_PolyhedraPtr dd_DDMatrix2Poly2(dd_MatrixPtr M, dd_RowOrderType horder, dd_ErrorType *err) |
| 1006 | { |
| 1007 | dd_rowrange i; |
| 1008 | dd_colrange j; |
| 1009 | dd_PolyhedraPtr poly=NULL; |
| 1010 | |
| 1011 | *err=dd_NoError; |
| 1012 | if (M->rowsize<0 || M->colsize<0){ |
| 1013 | *err=dd_NegativeMatrixSize; |
| 1014 | goto _L99; |
| 1015 | } |
| 1016 | poly=dd_CreatePolyhedraData(M->rowsize, M->colsize); |
| 1017 | poly->representation=M->representation; |
| 1018 | poly->homogeneous=dd_TRUE; |
| 1019 | |
| 1020 | for (i = 1; i <= M->rowsize; i++) { |
| 1021 | if (set_member(i, M->linset)) { |
| 1022 | poly->EqualityIndex[i]=1; |
| 1023 | } |
| 1024 | for (j = 1; j <= M->colsize; j++) { |
| 1025 | dd_set(poly->A[i-1][j-1], M->matrix[i-1][j-1]); |
| 1026 | if (j==1 && dd_Nonzero(M->matrix[i-1][j-1])) poly->homogeneous = dd_FALSE; |
| 1027 | } /*of j*/ |
| 1028 | } /*of i*/ |
| 1029 | dd_DoubleDescription2(poly, horder, err); |
| 1030 | _L99: |
| 1031 | return poly; |
| 1032 | } |
| 1033 | |
| 1034 | void dd_MatrixIntegerFilter(dd_MatrixPtr M) |
| 1035 | { /* setting an almost integer to the integer. */ |
| 1036 | dd_rowrange i; |
| 1037 | dd_colrange j; |
| 1038 | mytype x; |
| 1039 | |
| 1040 | dd_init(x); |
| 1041 | for (i=0; i< M->rowsize; i++) |
| 1042 | for (j=0; j< M->colsize; j++){ |
| 1043 | dd_SnapToInteger(x, M->matrix[i][j]); |
| 1044 | dd_set(M->matrix[i][j],x); |
| 1045 | } |
| 1046 | dd_clear(x); |
| 1047 | } |
| 1048 | |
| 1049 | void dd_CopyRay(mytype *a, dd_colrange d_origsize, dd_RayPtr RR, |
| 1050 | dd_RepresentationType rep, dd_colindex reducedcol) |
| 1051 | { |
| 1052 | long j,j1; |
| 1053 | mytype b; |
| 1054 | |
| 1055 | dd_init(b); |
| 1056 | for (j = 1; j <= d_origsize; j++){ |
| 1057 | j1=reducedcol[j]; |
| 1058 | if (j1>0){ |
| 1059 | dd_set(a[j-1],RR->Ray[j1-1]); |
| 1060 | /* the original column j is mapped to j1, and thus |
| 1061 | copy the corresponding component */ |
| 1062 | } else { |
| 1063 | dd_set(a[j-1],dd_purezero); |
| 1064 | /* original column is redundant and removed for computation */ |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | dd_set(b,a[0]); |
| 1069 | if (rep==dd_Generator && dd_Nonzero(b)){ |
| 1070 | dd_set(a[0],dd_one); |
| 1071 | for (j = 2; j <= d_origsize; j++) |
| 1072 | dd_div(a[j-1],a[j-1],b); /* normalization for generators */ |
| 1073 | } |
| 1074 | dd_clear(b); |
| 1075 | } |
| 1076 | |
| 1077 | void dd_WriteRay(FILE *f, dd_colrange d_origsize, dd_RayPtr RR, dd_RepresentationType rep, dd_colindex reducedcol) |
| 1078 | { |
| 1079 | dd_colrange j; |
| 1080 | static dd_colrange d_last=0; |
| 1081 | static dd_Arow a; |
| 1082 | |
| 1083 | if (d_last< d_origsize){ |
| 1084 | if (d_last>0) free(a); |
| 1085 | dd_InitializeArow(d_origsize+1, &a); |
| 1086 | d_last=d_origsize+1; |
| 1087 | } |
| 1088 | |
| 1089 | dd_CopyRay(a, d_origsize, RR, rep, reducedcol); |
| 1090 | for (j = 0; j < d_origsize; j++) dd_WriteNumber(f, a[j]); |
| 1091 | fprintf(f, "\n"); |
| 1092 | } |
| 1093 | |
| 1094 | void dd_WriteArow(FILE *f, dd_Arow a, dd_colrange d) |
| 1095 | { |
| 1096 | dd_colrange j; |
| 1097 | |
| 1098 | for (j = 0; j < d; j++) dd_WriteNumber(f, a[j]); |
| 1099 | fprintf(f, "\n"); |
| 1100 | } |
| 1101 | |
| 1102 | void dd_WriteAmatrix(FILE *f, dd_Amatrix A, long rowmax, long colmax) |
| 1103 | { |
| 1104 | long i,j; |
| 1105 | |
| 1106 | if (A==NULL){ |
| 1107 | fprintf(f, "WriteAmatrix: The requested matrix is empty\n"); |
| 1108 | goto _L99; |
| 1109 | } |
| 1110 | fprintf(f, "begin\n"); |
| 1111 | #if defined GMPRATIONAL |
| 1112 | fprintf(f, " %ld %ld rational\n",rowmax, colmax); |
| 1113 | #else |
| 1114 | fprintf(f, " %ld %ld real\n",rowmax, colmax); |
| 1115 | #endif |
| 1116 | for (i=1; i <= rowmax; i++) { |
| 1117 | for (j=1; j <= colmax; j++) { |
| 1118 | dd_WriteNumber(f, A[i-1][j-1]); |
| 1119 | } |
| 1120 | fprintf(f,"\n"); |
| 1121 | } |
| 1122 | fprintf(f, "end\n"); |
| 1123 | _L99:; |
| 1124 | } |
| 1125 | |
| 1126 | void dd_WriteBmatrix(FILE *f, dd_colrange d_size, dd_Bmatrix B) |
| 1127 | { |
| 1128 | dd_colrange j1, j2; |
| 1129 | |
| 1130 | if (B==NULL){ |
| 1131 | fprintf(f, "WriteBmatrix: The requested matrix is empty\n"); |
| 1132 | goto _L99; |
| 1133 | } |
| 1134 | for (j1 = 0; j1 < d_size; j1++) { |
| 1135 | for (j2 = 0; j2 < d_size; j2++) { |
| 1136 | dd_WriteNumber(f, B[j1][j2]); |
| 1137 | } /*of j2*/ |
| 1138 | putc('\n', f); |
| 1139 | } /*of j1*/ |
| 1140 | putc('\n', f); |
| 1141 | _L99:; |
| 1142 | } |
| 1143 | |
| 1144 | void dd_WriteSetFamily(FILE *f, dd_SetFamilyPtr F) |
| 1145 | { |
| 1146 | dd_bigrange i; |
| 1147 | |
| 1148 | if (F==NULL){ |
| 1149 | fprintf(f, "WriteSetFamily: The requested family is empty\n"); |
| 1150 | goto _L99; |
| 1151 | } |
| 1152 | fprintf(f,"begin\n"); |
| 1153 | fprintf(f," %ld %ld\n", F->famsize, F->setsize); |
| 1154 | for (i=0; i<F->famsize; i++) { |
| 1155 | fprintf(f, " %ld %ld : ", i+1, set_card(F->set[i])); |
| 1156 | set_fwrite(f, F->set[i]); |
| 1157 | } |
| 1158 | fprintf(f,"end\n"); |
| 1159 | _L99:; |
| 1160 | } |
| 1161 | |
| 1162 | void dd_WriteSetFamilyCompressed(FILE *f, dd_SetFamilyPtr F) |
| 1163 | { |
| 1164 | dd_bigrange i,card; |
| 1165 | |
| 1166 | if (F==NULL){ |
| 1167 | fprintf(f, "WriteSetFamily: The requested family is empty\n"); |
| 1168 | goto _L99; |
| 1169 | } |
| 1170 | fprintf(f,"begin\n"); |
| 1171 | fprintf(f," %ld %ld\n", F->famsize, F->setsize); |
| 1172 | for (i=0; i<F->famsize; i++) { |
| 1173 | card=set_card(F->set[i]); |
| 1174 | if (F->setsize - card >= card){ |
| 1175 | fprintf(f, " %ld %ld : ", i+1, card); |
| 1176 | set_fwrite(f, F->set[i]); |
| 1177 | } else { |
| 1178 | fprintf(f, " %ld %ld : ", i+1, -card); |
| 1179 | set_fwrite_compl(f, F->set[i]); |
| 1180 | } |
| 1181 | } |
| 1182 | fprintf(f,"end\n"); |
| 1183 | _L99:; |
| 1184 | } |
| 1185 | |
| 1186 | void dd_WriteMatrix(FILE *f, dd_MatrixPtr M) |
| 1187 | { |
| 1188 | dd_rowrange i, linsize; |
| 1189 | |
| 1190 | if (M==NULL){ |
| 1191 | fprintf(f, "WriteMatrix: The requested matrix is empty\n"); |
| 1192 | goto _L99; |
| 1193 | } |
| 1194 | switch (M->representation) { |
| 1195 | case dd_Inequality: |
| 1196 | fprintf(f, "H-representation\n"); break; |
| 1197 | case dd_Generator: |
| 1198 | fprintf(f, "V-representation\n"); break; |
| 1199 | case dd_Unspecified: |
| 1200 | break; |
| 1201 | } |
| 1202 | linsize=set_card(M->linset); |
| 1203 | if (linsize>0) { |
| 1204 | fprintf(f, "linearity %ld ", linsize); |
| 1205 | for (i=1; i<=M->rowsize; i++) |
| 1206 | if (set_member(i, M->linset)) fprintf(f, " %ld", i); |
| 1207 | fprintf(f, "\n"); |
| 1208 | } |
| 1209 | dd_WriteAmatrix(f, M->matrix, M->rowsize, M->colsize); |
| 1210 | if (M->objective!=dd_LPnone){ |
| 1211 | if (M->objective==dd_LPmax) |
| 1212 | fprintf(f, "maximize\n"); |
| 1213 | else |
| 1214 | fprintf(f, "minimize\n"); |
| 1215 | dd_WriteArow(f, M->rowvec, M->colsize); |
| 1216 | } |
| 1217 | _L99:; |
| 1218 | } |
| 1219 | |
| 1220 | void dd_WriteLP(FILE *f, dd_LPPtr lp) |
| 1221 | { |
| 1222 | if (lp==NULL){ |
| 1223 | fprintf(f, "WriteLP: The requested lp is empty\n"); |
| 1224 | goto _L99; |
| 1225 | } |
| 1226 | fprintf(f, "H-representation\n"); |
| 1227 | |
| 1228 | dd_WriteAmatrix(f, lp->A, (lp->m)-1, lp->d); |
| 1229 | if (lp->objective!=dd_LPnone){ |
| 1230 | if (lp->objective==dd_LPmax) |
| 1231 | fprintf(f, "maximize\n"); |
| 1232 | else |
| 1233 | fprintf(f, "minimize\n"); |
| 1234 | dd_WriteArow(f, lp->A[lp->objrow-1], lp->d); |
| 1235 | } |
| 1236 | _L99:; |
| 1237 | } |
| 1238 | |
| 1239 | |
| 1240 | void dd_SnapToInteger(mytype y, mytype x) |
| 1241 | { |
| 1242 | /* this is broken. It does nothing. */ |
| 1243 | dd_set(y,x); |
| 1244 | } |
| 1245 | |
| 1246 | |
| 1247 | void dd_WriteReal(FILE *f, mytype x) |
| 1248 | { |
| 1249 | long ix1,ix2,ix; |
| 1250 | double ax; |
| 1251 | |
| 1252 | ax=dd_get_d(x); |
| 1253 | ix1= (long) (fabs(ax) * 10000. + 0.5); |
| 1254 | ix2= (long) (fabs(ax) + 0.5); |
| 1255 | ix2= ix2*10000; |
| 1256 | if ( ix1 == ix2) { |
| 1257 | if (dd_Positive(x)) { |
| 1258 | ix = (long)(ax + 0.5); |
| 1259 | } else { |
| 1260 | ix = (long)(-ax + 0.5); |
| 1261 | ix = -ix; |
| 1262 | } |
| 1263 | fprintf(f, " %2ld", ix); |
| 1264 | } else |
| 1265 | fprintf(f, " % .9E",ax); |
| 1266 | } |
| 1267 | |
| 1268 | void dd_WriteNumber(FILE *f, mytype x) |
| 1269 | { |
| 1270 | #if defined GMPRATIONAL |
| 1271 | fprintf(f," "); |
| 1272 | mpq_out_str(f, 10, x); |
| 1273 | #else |
| 1274 | dd_WriteReal(f, x); |
| 1275 | #endif |
| 1276 | } |
| 1277 | |
| 1278 | |
| 1279 | void dd_WriteIncidence(FILE *f, dd_PolyhedraPtr poly) |
| 1280 | { |
| 1281 | dd_SetFamilyPtr I; |
| 1282 | |
| 1283 | switch (poly->representation) { |
| 1284 | case dd_Inequality: |
| 1285 | fprintf(f, "ecd_file: Incidence of generators and inequalities\n"); |
| 1286 | break; |
| 1287 | case dd_Generator: |
| 1288 | fprintf(f, "icd_file: Incidence of inequalities and generators\n"); |
| 1289 | break; |
| 1290 | |
| 1291 | default: |
| 1292 | break; |
| 1293 | } |
| 1294 | I=dd_CopyIncidence(poly); |
| 1295 | dd_WriteSetFamilyCompressed(f,I); |
| 1296 | dd_FreeSetFamily(I); |
| 1297 | } |
| 1298 | |
| 1299 | void dd_WriteAdjacency(FILE *f, dd_PolyhedraPtr poly) |
| 1300 | { |
| 1301 | dd_SetFamilyPtr A; |
| 1302 | |
| 1303 | switch (poly->representation) { |
| 1304 | case dd_Inequality: |
| 1305 | fprintf(f, "ead_file: Adjacency of generators\n"); |
| 1306 | break; |
| 1307 | case dd_Generator: |
| 1308 | fprintf(f, "iad_file: Adjacency of inequalities\n"); |
| 1309 | break; |
| 1310 | |
| 1311 | default: |
| 1312 | break; |
| 1313 | } |
| 1314 | A=dd_CopyAdjacency(poly); |
| 1315 | dd_WriteSetFamilyCompressed(f,A); |
| 1316 | dd_FreeSetFamily(A); |
| 1317 | } |
| 1318 | |
| 1319 | |
| 1320 | void dd_ComputeAinc(dd_PolyhedraPtr poly) |
| 1321 | { |
| 1322 | /* This generates the input incidence array poly->Ainc, and |
| 1323 | two sets: poly->Ared, poly->Adom. |
| 1324 | */ |
| 1325 | dd_bigrange k; |
| 1326 | dd_rowrange i,m1; |
| 1327 | dd_colrange j; |
| 1328 | dd_boolean redundant; |
| 1329 | dd_MatrixPtr M=NULL; |
| 1330 | mytype sum,temp; |
| 1331 | |
| 1332 | dd_init(sum); dd_init(temp); |
| 1333 | if (poly->AincGenerated==dd_TRUE) goto _L99; |
| 1334 | |
| 1335 | M=dd_CopyOutput(poly); |
| 1336 | poly->n=M->rowsize; |
| 1337 | m1=poly->m1; |
| 1338 | /* this number is same as poly->m, except when |
| 1339 | poly is given by nonhomogeneous inequalty: |
| 1340 | !(poly->homogeneous) && poly->representation==Inequality, |
| 1341 | it is poly->m+1. See dd_ConeDataLoad. |
| 1342 | */ |
| 1343 | poly->Ainc=(set_type*)calloc(m1, sizeof(set_type)); |
| 1344 | for(i=1; i<=m1; i++) set_initialize(&(poly->Ainc[i-1]),poly->n); |
| 1345 | set_initialize(&(poly->Ared), m1); |
| 1346 | set_initialize(&(poly->Adom), m1); |
| 1347 | |
| 1348 | for (k=1; k<=poly->n; k++){ |
| 1349 | for (i=1; i<=poly->m; i++){ |
| 1350 | dd_set(sum,dd_purezero); |
| 1351 | for (j=1; j<=poly->d; j++){ |
| 1352 | dd_mul(temp,poly->A[i-1][j-1],M->matrix[k-1][j-1]); |
| 1353 | dd_add(sum,sum,temp); |
| 1354 | } |
| 1355 | if (dd_EqualToZero(sum)) { |
| 1356 | set_addelem(poly->Ainc[i-1], k); |
| 1357 | } |
| 1358 | } |
| 1359 | if (!(poly->homogeneous) && poly->representation==dd_Inequality){ |
| 1360 | if (dd_EqualToZero(M->matrix[k-1][0])) { |
| 1361 | set_addelem(poly->Ainc[m1-1], k); /* added infinity inequality (1,0,0,...,0) */ |
| 1362 | } |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | for (i=1; i<=m1; i++){ |
| 1367 | if (set_card(poly->Ainc[i-1])==M->rowsize){ |
| 1368 | set_addelem(poly->Adom, i); |
| 1369 | } |
| 1370 | } |
| 1371 | for (i=m1; i>=1; i--){ |
| 1372 | if (set_card(poly->Ainc[i-1])==0){ |
| 1373 | redundant=dd_TRUE; |
| 1374 | set_addelem(poly->Ared, i); |
| 1375 | }else { |
| 1376 | redundant=dd_FALSE; |
| 1377 | for (k=1; k<=m1; k++) { |
| 1378 | if (k!=i && !set_member(k, poly->Ared) && !set_member(k, poly->Adom) && |
| 1379 | set_subset(poly->Ainc[i-1], poly->Ainc[k-1])){ |
| 1380 | if (!redundant){ |
| 1381 | redundant=dd_TRUE; |
| 1382 | } |
| 1383 | set_addelem(poly->Ared, i); |
| 1384 | } |
| 1385 | } |
| 1386 | } |
| 1387 | } |
| 1388 | dd_FreeMatrix(M); |
| 1389 | poly->AincGenerated=dd_TRUE; |
| 1390 | _L99:; |
| 1391 | dd_clear(sum); dd_clear(temp); |
| 1392 | } |
| 1393 | |
| 1394 | dd_boolean dd_InputAdjacentQ(dd_PolyhedraPtr poly, |
| 1395 | dd_rowrange i1, dd_rowrange i2) |
| 1396 | /* Before calling this function, RedundantSet must be |
| 1397 | a set of row indices whose removal results in a minimal |
| 1398 | nonredundant system to represent the input polyhedron, |
| 1399 | DominantSet must be the set of row indices which are |
| 1400 | active at every extreme points/rays. |
| 1401 | */ |
| 1402 | { |
| 1403 | dd_boolean adj=dd_TRUE; |
| 1404 | dd_rowrange i; |
| 1405 | static set_type common; |
| 1406 | static long lastn=0; |
| 1407 | |
| 1408 | if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly); |
| 1409 | if (lastn!=poly->n){ |
| 1410 | if (lastn >0) set_free(common); |
| 1411 | set_initialize(&common, poly->n); |
| 1412 | lastn=poly->n; |
| 1413 | } |
| 1414 | if (set_member(i1, poly->Ared) || set_member(i2, poly->Ared)){ |
| 1415 | adj=dd_FALSE; |
| 1416 | goto _L99; |
| 1417 | } |
| 1418 | if (set_member(i1, poly->Adom) || set_member(i2, poly->Adom)){ |
| 1419 | // dominant inequality is considered adjacencent to all others. |
| 1420 | adj=dd_TRUE; |
| 1421 | goto _L99; |
| 1422 | } |
| 1423 | set_int(common, poly->Ainc[i1-1], poly->Ainc[i2-1]); |
| 1424 | i=0; |
| 1425 | while (i<poly->m1 && adj==dd_TRUE){ |
| 1426 | i++; |
| 1427 | if (i!=i1 && i!=i2 && !set_member(i, poly->Ared) && |
| 1428 | !set_member(i, poly->Adom) && set_subset(common,poly->Ainc[i-1])){ |
| 1429 | adj=dd_FALSE; |
| 1430 | } |
| 1431 | } |
| 1432 | _L99:; |
| 1433 | return adj; |
| 1434 | } |
| 1435 | |
| 1436 | |
| 1437 | void dd_WriteInputIncidence(FILE *f, dd_PolyhedraPtr poly) |
| 1438 | { |
| 1439 | dd_SetFamilyPtr I; |
| 1440 | |
| 1441 | if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly); |
| 1442 | switch (poly->representation) { |
| 1443 | case dd_Inequality: |
| 1444 | fprintf(f,"icd_file: Incidence of inequalities and generators\n"); |
| 1445 | break; |
| 1446 | |
| 1447 | case dd_Generator: |
| 1448 | fprintf(f,"ecd_file: Incidence of generators and inequalities\n"); |
| 1449 | break; |
| 1450 | |
| 1451 | default: |
| 1452 | break; |
| 1453 | } |
| 1454 | |
| 1455 | I=dd_CopyInputIncidence(poly); |
| 1456 | dd_WriteSetFamilyCompressed(f,I); |
| 1457 | dd_FreeSetFamily(I); |
| 1458 | } |
| 1459 | |
| 1460 | void dd_WriteInputAdjacency(FILE *f, dd_PolyhedraPtr poly) |
| 1461 | { |
| 1462 | dd_SetFamilyPtr A; |
| 1463 | |
| 1464 | if (poly->AincGenerated==dd_FALSE){ |
| 1465 | dd_ComputeAinc(poly); |
| 1466 | } |
| 1467 | switch (poly->representation) { |
| 1468 | case dd_Inequality: |
| 1469 | fprintf(f, "iad_file: Adjacency of inequalities\n"); |
| 1470 | break; |
| 1471 | |
| 1472 | case dd_Generator: |
| 1473 | fprintf(f, "ead_file: Adjacency of generators\n"); |
| 1474 | break; |
| 1475 | |
| 1476 | default: |
| 1477 | break; |
| 1478 | } |
| 1479 | A=dd_CopyInputAdjacency(poly); |
| 1480 | dd_WriteSetFamilyCompressed(f,A); |
| 1481 | dd_FreeSetFamily(A); |
| 1482 | } |
| 1483 | |
| 1484 | |
| 1485 | void dd_WriteProgramDescription(FILE *f) |
| 1486 | { |
| 1487 | fprintf(f, "* cddlib: a double description library:%s\n", dd_DDVERSION); |
| 1488 | fprintf(f, "* compiled for %s arithmetic.\n", dd_ARITHMETIC); |
| 1489 | fprintf(f,"* %s\n",dd_COPYRIGHT); |
| 1490 | } |
| 1491 | |
| 1492 | void dd_WriteTimes(FILE *f, time_t starttime, time_t endtime) |
| 1493 | { |
| 1494 | long ptime,ptime_sec,ptime_minu, ptime_hour; |
| 1495 | |
| 1496 | /* |
| 1497 | ptime=difftime(endtime,starttime); |
| 1498 | This function is ANSI standard, but not available sometime |
| 1499 | */ |
| 1500 | ptime=(endtime - starttime); |
| 1501 | /* This is to replace the line above, but it may not give |
| 1502 | correct time in seconds */ |
| 1503 | ptime_hour=ptime/3600; |
| 1504 | ptime_minu=(ptime-ptime_hour*3600)/60; |
| 1505 | ptime_sec=ptime%60; |
| 1506 | fprintf(f,"* Computation started at %s",asctime(localtime(&starttime))); |
| 1507 | fprintf(f,"* ended at %s",asctime(localtime(&endtime))); |
| 1508 | fprintf(f,"* Total processor time = %ld seconds\n",ptime); |
| 1509 | fprintf(f,"* = %ld h %ld m %ld s\n",ptime_hour, ptime_minu, ptime_sec); |
| 1510 | } |
| 1511 | |
| 1512 | void dd_WriteDDTimes(FILE *f, dd_PolyhedraPtr poly) |
| 1513 | { |
| 1514 | dd_WriteTimes(f,poly->child->starttime,poly->child->endtime); |
| 1515 | } |
| 1516 | |
| 1517 | void dd_WriteLPTimes(FILE *f, dd_LPPtr lp) |
| 1518 | { |
| 1519 | dd_WriteTimes(f,lp->starttime,lp->endtime); |
| 1520 | } |
| 1521 | |
| 1522 | void dd_WriteLPStats(FILE *f) |
| 1523 | { |
| 1524 | time_t currenttime; |
| 1525 | |
| 1526 | time(¤ttime); |
| 1527 | |
| 1528 | fprintf(f, "\n*--- Statistics of pivots ---\n"); |
| 1529 | #if defined GMPRATIONAL |
| 1530 | fprintf(f, "* f0 = %ld (float basis finding pivots)\n",ddf_statBApivots); |
| 1531 | fprintf(f, "* fc = %ld (float CC pivots)\n",ddf_statCCpivots); |
| 1532 | fprintf(f, "* f1 = %ld (float dual simplex phase I pivots)\n",ddf_statDS1pivots); |
| 1533 | fprintf(f, "* f2 = %ld (float dual simplex phase II pivots)\n",ddf_statDS2pivots); |
| 1534 | fprintf(f, "* f3 = %ld (float anticycling CC pivots)\n",ddf_statACpivots); |
| 1535 | fprintf(f, "* e0 = %ld (exact basis finding pivots)\n",dd_statBApivots); |
| 1536 | fprintf(f, "* ec = %ld (exact CC pivots)\n",dd_statCCpivots); |
| 1537 | fprintf(f, "* e1 = %ld (exact dual simplex phase I pivots)\n",dd_statDS1pivots); |
| 1538 | fprintf(f, "* e2 = %ld (exact dual simplex phase II pivots)\n",dd_statDS2pivots); |
| 1539 | fprintf(f, "* e3 = %ld (exact anticycling CC pivots)\n",dd_statACpivots); |
| 1540 | fprintf(f, "* e4 = %ld (exact basis verification pivots)\n",dd_statBSpivots); |
| 1541 | #else |
| 1542 | fprintf(f, "f0 = %ld (float basis finding pivots)\n",dd_statBApivots); |
| 1543 | fprintf(f, "fc = %ld (float CC pivots)\n",dd_statCCpivots); |
| 1544 | fprintf(f, "f1 = %ld (float dual simplex phase I pivots)\n",dd_statDS1pivots); |
| 1545 | fprintf(f, "f2 = %ld (float dual simplex phase II pivots)\n",dd_statDS2pivots); |
| 1546 | fprintf(f, "f3 = %ld (float anticycling CC pivots)\n",dd_statACpivots); |
| 1547 | #endif |
| 1548 | dd_WriteLPMode(f); |
| 1549 | dd_WriteTimes(f,dd_statStartTime, currenttime); |
| 1550 | } |
| 1551 | |
| 1552 | void dd_WriteLPMode(FILE *f) |
| 1553 | { |
| 1554 | fprintf(f, "\n* LP solver: "); |
| 1555 | switch (dd_choiceLPSolverDefault) { |
| 1556 | case dd_DualSimplex: |
| 1557 | fprintf(f, "DualSimplex\n"); |
| 1558 | break; |
| 1559 | case dd_CrissCross: |
| 1560 | fprintf(f, "Criss-Cross\n"); |
| 1561 | break; |
| 1562 | default: break; |
| 1563 | } |
| 1564 | |
| 1565 | fprintf(f, "* Redundancy cheking solver: "); |
| 1566 | switch (dd_choiceRedcheckAlgorithm) { |
| 1567 | case dd_DualSimplex: |
| 1568 | fprintf(f, "DualSimplex\n"); |
| 1569 | break; |
| 1570 | case dd_CrissCross: |
| 1571 | fprintf(f, "Criss-Cross\n"); |
| 1572 | break; |
| 1573 | default: break; |
| 1574 | } |
| 1575 | |
| 1576 | fprintf(f, "* Lexicographic pivot: "); |
| 1577 | if (dd_choiceLexicoPivotQ) fprintf(f, " on\n"); |
| 1578 | else fprintf(f, " off\n"); |
| 1579 | |
| 1580 | } |
| 1581 | |
| 1582 | |
| 1583 | void dd_WriteRunningMode(FILE *f, dd_PolyhedraPtr poly) |
| 1584 | { |
| 1585 | if (poly->child!=NULL){ |
| 1586 | fprintf(f,"* roworder: "); |
| 1587 | switch (poly->child->HalfspaceOrder) { |
| 1588 | |
| 1589 | case dd_MinIndex: |
| 1590 | fprintf(f, "minindex\n"); |
| 1591 | break; |
| 1592 | |
| 1593 | case dd_MaxIndex: |
| 1594 | fprintf(f, "maxindex\n"); |
| 1595 | break; |
| 1596 | |
| 1597 | case dd_MinCutoff: |
| 1598 | fprintf(f, "mincutoff\n"); |
| 1599 | break; |
| 1600 | |
| 1601 | case dd_MaxCutoff: |
| 1602 | fprintf(f, "maxcutoff\n"); |
| 1603 | break; |
| 1604 | |
| 1605 | case dd_MixCutoff: |
| 1606 | fprintf(f, "mixcutoff\n"); |
| 1607 | break; |
| 1608 | |
| 1609 | case dd_LexMin: |
| 1610 | fprintf(f, "lexmin\n"); |
| 1611 | break; |
| 1612 | |
| 1613 | case dd_LexMax: |
| 1614 | fprintf(f, "lexmax\n"); |
| 1615 | break; |
| 1616 | |
| 1617 | case dd_RandomRow: |
| 1618 | fprintf(f, "random %d\n",poly->child->rseed); |
| 1619 | break; |
| 1620 | |
| 1621 | default: break; |
| 1622 | } |
| 1623 | } |
| 1624 | } |
| 1625 | |
| 1626 | |
| 1627 | void dd_WriteCompletionStatus(FILE *f, dd_ConePtr cone) |
| 1628 | { |
| 1629 | if (cone->Iteration<cone->m && cone->CompStatus==dd_AllFound) { |
| 1630 | fprintf(f,"*Computation completed at Iteration %4ld.\n", cone->Iteration); |
| 1631 | } |
| 1632 | if (cone->CompStatus == dd_RegionEmpty) { |
| 1633 | fprintf(f,"*Computation completed at Iteration %4ld because the region found empty.\n",cone->Iteration); |
| 1634 | } |
| 1635 | } |
| 1636 | |
| 1637 | void dd_WritePolyFile(FILE *f, dd_PolyhedraPtr poly) |
| 1638 | { |
| 1639 | dd_WriteAmatrix(f,poly->A,poly->m,poly->d); |
| 1640 | } |
| 1641 | |
| 1642 | |
| 1643 | void dd_WriteErrorMessages(FILE *f, dd_ErrorType Error) |
| 1644 | { |
| 1645 | switch (Error) { |
| 1646 | |
| 1647 | case dd_DimensionTooLarge: |
| 1648 | fprintf(f, "*Input Error: Input matrix is too large:\n"); |
| 1649 | fprintf(f, "*Please increase MMAX and/or NMAX in the source code and recompile.\n"); |
| 1650 | break; |
| 1651 | |
| 1652 | case dd_IFileNotFound: |
| 1653 | fprintf(f, "*Input Error: Specified input file does not exist.\n"); |
| 1654 | break; |
| 1655 | |
| 1656 | case dd_OFileNotOpen: |
| 1657 | fprintf(f, "*Output Error: Specified output file cannot be opened.\n"); |
| 1658 | break; |
| 1659 | |
| 1660 | case dd_NegativeMatrixSize: |
| 1661 | fprintf(f, "*Input Error: Input matrix has a negative size:\n"); |
| 1662 | fprintf(f, "*Please check rowsize or colsize.\n"); |
| 1663 | break; |
| 1664 | |
| 1665 | case dd_ImproperInputFormat: |
| 1666 | fprintf(f,"*Input Error: Input format is not correct.\n"); |
| 1667 | fprintf(f,"*Format:\n"); |
| 1668 | fprintf(f," begin\n"); |
| 1669 | fprintf(f," m n NumberType(real, rational or integer)\n"); |
| 1670 | fprintf(f," b -A\n"); |
| 1671 | fprintf(f," end\n"); |
| 1672 | break; |
| 1673 | |
| 1674 | case dd_EmptyVrepresentation: |
| 1675 | fprintf(f, "*Input Error: V-representation is empty:\n"); |
| 1676 | fprintf(f, "*cddlib does not accept this trivial case for which output can be any inconsistent system.\n"); |
| 1677 | break; |
| 1678 | |
| 1679 | case dd_EmptyHrepresentation: |
| 1680 | fprintf(f, "*Input Error: H-representation is empty.\n"); |
| 1681 | break; |
| 1682 | |
| 1683 | case dd_EmptyRepresentation: |
| 1684 | fprintf(f, "*Input Error: Representation is empty.\n"); |
| 1685 | break; |
| 1686 | |
| 1687 | case dd_NoLPObjective: |
| 1688 | fprintf(f, "*LP Error: No LP objective (max or min) is set.\n"); |
| 1689 | break; |
| 1690 | |
| 1691 | case dd_NoRealNumberSupport: |
| 1692 | fprintf(f, "*LP Error: The binary (with GMP Rational) does not support Real number input.\n"); |
| 1693 | fprintf(f, " : Use a binary compiled without -DGMPRATIONAL option.\n"); |
| 1694 | break; |
| 1695 | |
| 1696 | case dd_NotAvailForH: |
| 1697 | fprintf(f, "*Error: A function is called with H-rep which does not support an H-representation.\n"); |
| 1698 | break; |
| 1699 | |
| 1700 | case dd_NotAvailForV: |
| 1701 | fprintf(f, "*Error: A function is called with V-rep which does not support an V-representation.\n"); |
| 1702 | break; |
| 1703 | |
| 1704 | case dd_CannotHandleLinearity: |
| 1705 | fprintf(f, "*Error: The function called cannot handle linearity.\n"); |
| 1706 | break; |
| 1707 | |
| 1708 | case dd_RowIndexOutOfRange: |
| 1709 | fprintf(f, "*Error: Specified row index is out of range\n"); |
| 1710 | break; |
| 1711 | |
| 1712 | case dd_ColIndexOutOfRange: |
| 1713 | fprintf(f, "*Error: Specified column index is out of range\n"); |
| 1714 | break; |
| 1715 | |
| 1716 | case dd_LPCycling: |
| 1717 | fprintf(f, "*Error: Possibly an LP cycling occurs. Use the Criss-Cross method.\n"); |
| 1718 | break; |
| 1719 | |
| 1720 | case dd_NumericallyInconsistent: |
| 1721 | fprintf(f, "*Error: Numerical inconsistency is found. Use the GMP exact arithmetic.\n"); |
| 1722 | break; |
| 1723 | |
| 1724 | case dd_NoError: |
| 1725 | fprintf(f,"*No Error found.\n"); |
| 1726 | break; |
| 1727 | } |
| 1728 | } |
| 1729 | |
| 1730 | |
| 1731 | dd_SetFamilyPtr dd_CopyIncidence(dd_PolyhedraPtr poly) |
| 1732 | { |
| 1733 | dd_SetFamilyPtr F=NULL; |
| 1734 | dd_bigrange k; |
| 1735 | dd_rowrange i; |
| 1736 | |
| 1737 | if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99; |
| 1738 | if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly); |
| 1739 | F=dd_CreateSetFamily(poly->n, poly->m1); |
| 1740 | for (i=1; i<=poly->m1; i++) |
| 1741 | for (k=1; k<=poly->n; k++) |
| 1742 | if (set_member(k,poly->Ainc[i-1])) set_addelem(F->set[k-1],i); |
| 1743 | _L99:; |
| 1744 | return F; |
| 1745 | } |
| 1746 | |
| 1747 | dd_SetFamilyPtr dd_CopyInputIncidence(dd_PolyhedraPtr poly) |
| 1748 | { |
| 1749 | dd_rowrange i; |
| 1750 | dd_SetFamilyPtr F=NULL; |
| 1751 | |
| 1752 | if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99; |
| 1753 | if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly); |
| 1754 | F=dd_CreateSetFamily(poly->m1, poly->n); |
| 1755 | for(i=0; i< poly->m1; i++){ |
| 1756 | set_copy(F->set[i], poly->Ainc[i]); |
| 1757 | } |
| 1758 | _L99:; |
| 1759 | return F; |
| 1760 | } |
| 1761 | |
| 1762 | dd_SetFamilyPtr dd_CopyAdjacency(dd_PolyhedraPtr poly) |
| 1763 | { |
| 1764 | dd_RayPtr RayPtr1,RayPtr2; |
| 1765 | dd_SetFamilyPtr F=NULL; |
| 1766 | long pos1, pos2; |
| 1767 | dd_bigrange lstart,k,n; |
| 1768 | set_type linset,allset; |
| 1769 | dd_boolean adj; |
| 1770 | |
| 1771 | if (poly->n==0 && poly->homogeneous && poly->representation==dd_Inequality){ |
| 1772 | n=1; /* the origin (the unique vertex) should be output. */ |
| 1773 | } else n=poly->n; |
| 1774 | set_initialize(&linset, n); |
| 1775 | set_initialize(&allset, n); |
| 1776 | if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99; |
| 1777 | F=dd_CreateSetFamily(n, n); |
| 1778 | if (n<=0) goto _L99; |
| 1779 | poly->child->LastRay->Next=NULL; |
| 1780 | for (RayPtr1=poly->child->FirstRay, pos1=1;RayPtr1 != NULL; |
| 1781 | RayPtr1 = RayPtr1->Next, pos1++){ |
| 1782 | for (RayPtr2=poly->child->FirstRay, pos2=1; RayPtr2 != NULL; |
| 1783 | RayPtr2 = RayPtr2->Next, pos2++){ |
| 1784 | if (RayPtr1!=RayPtr2){ |
| 1785 | dd_CheckAdjacency(poly->child, &RayPtr1, &RayPtr2, &adj); |
| 1786 | if (adj){ |
| 1787 | set_addelem(F->set[pos1-1], pos2); |
| 1788 | } |
| 1789 | } |
| 1790 | } |
| 1791 | } |
| 1792 | lstart=poly->n - poly->ldim + 1; |
| 1793 | set_compl(allset,allset); /* allset is set to the ground set. */ |
| 1794 | for (k=lstart; k<=poly->n; k++){ |
| 1795 | set_addelem(linset,k); /* linearity set */ |
| 1796 | set_copy(F->set[k-1],allset); /* linearity generator is adjacent to all */ |
| 1797 | } |
| 1798 | for (k=1; k<lstart; k++){ |
| 1799 | set_uni(F->set[k-1],F->set[k-1],linset); |
| 1800 | /* every generator is adjacent to all linearity generators */ |
| 1801 | } |
| 1802 | _L99:; |
| 1803 | set_free(allset); set_free(linset); |
| 1804 | return F; |
| 1805 | } |
| 1806 | |
| 1807 | dd_SetFamilyPtr dd_CopyInputAdjacency(dd_PolyhedraPtr poly) |
| 1808 | { |
| 1809 | dd_rowrange i,j; |
| 1810 | dd_SetFamilyPtr F=NULL; |
| 1811 | |
| 1812 | if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99; |
| 1813 | if (poly->AincGenerated==dd_FALSE) dd_ComputeAinc(poly); |
| 1814 | F=dd_CreateSetFamily(poly->m1, poly->m1); |
| 1815 | for (i=1; i<=poly->m1; i++){ |
| 1816 | for (j=1; j<=poly->m1; j++){ |
| 1817 | if (i!=j && dd_InputAdjacentQ(poly, i, j)) { |
| 1818 | set_addelem(F->set[i-1],j); |
| 1819 | } |
| 1820 | } |
| 1821 | } |
| 1822 | _L99:; |
| 1823 | return F; |
| 1824 | } |
| 1825 | |
| 1826 | dd_MatrixPtr dd_CopyOutput(dd_PolyhedraPtr poly) |
| 1827 | { |
| 1828 | dd_RayPtr RayPtr; |
| 1829 | dd_MatrixPtr M=NULL; |
| 1830 | dd_rowrange i=0,total; |
| 1831 | dd_colrange j,j1; |
| 1832 | mytype b; |
| 1833 | dd_RepresentationType outputrep=dd_Inequality; |
| 1834 | dd_boolean outputorigin=dd_FALSE; |
| 1835 | |
| 1836 | dd_init(b); |
| 1837 | total=poly->child->LinearityDim + poly->child->FeasibleRayCount; |
| 1838 | |
| 1839 | if (poly->child->d<=0 || poly->child->newcol[1]==0) total=total-1; |
| 1840 | if (poly->representation==dd_Inequality) outputrep=dd_Generator; |
| 1841 | if (total==0 && poly->homogeneous && poly->representation==dd_Inequality){ |
| 1842 | total=1; |
| 1843 | outputorigin=dd_TRUE; |
| 1844 | /* the origin (the unique vertex) should be output. */ |
| 1845 | } |
| 1846 | if (poly->child==NULL || poly->child->CompStatus!=dd_AllFound) goto _L99; |
| 1847 | |
| 1848 | M=dd_CreateMatrix(total, poly->d); |
| 1849 | RayPtr = poly->child->FirstRay; |
| 1850 | while (RayPtr != NULL) { |
| 1851 | if (RayPtr->feasible) { |
| 1852 | dd_CopyRay(M->matrix[i], poly->d, RayPtr, outputrep, poly->child->newcol); |
| 1853 | i++; /* 086 */ |
| 1854 | } |
| 1855 | RayPtr = RayPtr->Next; |
| 1856 | } |
| 1857 | for (j=2; j<=poly->d; j++){ |
| 1858 | if (poly->child->newcol[j]==0){ |
| 1859 | /* original column j is dependent on others and removed for the cone */ |
| 1860 | dd_set(b,poly->child->Bsave[0][j-1]); |
| 1861 | if (outputrep==dd_Generator && dd_Positive(b)){ |
| 1862 | dd_set(M->matrix[i][0],dd_one); /* dd_Normalize */ |
| 1863 | for (j1=1; j1<poly->d; j1++) |
| 1864 | dd_div(M->matrix[i][j1],(poly->child->Bsave[j1][j-1]),b); |
| 1865 | } else { |
| 1866 | for (j1=0; j1<poly->d; j1++) |
| 1867 | dd_set(M->matrix[i][j1],poly->child->Bsave[j1][j-1]); |
| 1868 | } |
| 1869 | set_addelem(M->linset, i+1); |
| 1870 | i++; |
| 1871 | } |
| 1872 | } |
| 1873 | if (outputorigin){ |
| 1874 | /* output the origin for homogeneous H-polyhedron with no rays. */ |
| 1875 | dd_set(M->matrix[0][0],dd_one); |
| 1876 | for (j=1; j<poly->d; j++){ |
| 1877 | dd_set(M->matrix[0][j],dd_purezero); |
| 1878 | } |
| 1879 | } |
| 1880 | dd_MatrixIntegerFilter(M); |
| 1881 | if (poly->representation==dd_Inequality) |
| 1882 | M->representation=dd_Generator; |
| 1883 | else |
| 1884 | M->representation=dd_Inequality; |
| 1885 | _L99:; |
| 1886 | dd_clear(b); |
| 1887 | return M; |
| 1888 | } |
| 1889 | |
| 1890 | dd_MatrixPtr dd_CopyInput(dd_PolyhedraPtr poly) |
| 1891 | { |
| 1892 | dd_MatrixPtr M=NULL; |
| 1893 | dd_rowrange i; |
| 1894 | |
| 1895 | M=dd_CreateMatrix(poly->m, poly->d); |
| 1896 | dd_CopyAmatrix(M->matrix, poly->A, poly->m, poly->d); |
| 1897 | for (i=1; i<=poly->m; i++) |
| 1898 | if (poly->EqualityIndex[i]==1) set_addelem(M->linset,i); |
| 1899 | dd_MatrixIntegerFilter(M); |
| 1900 | if (poly->representation==dd_Generator) |
| 1901 | M->representation=dd_Generator; |
| 1902 | else |
| 1903 | M->representation=dd_Inequality; |
| 1904 | return M; |
| 1905 | } |
| 1906 | |
| 1907 | dd_MatrixPtr dd_CopyGenerators(dd_PolyhedraPtr poly) |
| 1908 | { |
| 1909 | dd_MatrixPtr M=NULL; |
| 1910 | |
| 1911 | if (poly->representation==dd_Generator){ |
| 1912 | M=dd_CopyInput(poly); |
| 1913 | } else { |
| 1914 | M=dd_CopyOutput(poly); |
| 1915 | } |
| 1916 | return M; |
| 1917 | } |
| 1918 | |
| 1919 | dd_MatrixPtr dd_CopyInequalities(dd_PolyhedraPtr poly) |
| 1920 | { |
| 1921 | dd_MatrixPtr M=NULL; |
| 1922 | |
| 1923 | if (poly->representation==dd_Inequality){ |
| 1924 | M=dd_CopyInput(poly); |
| 1925 | } else { |
| 1926 | M=dd_CopyOutput(poly); |
| 1927 | } |
| 1928 | return M; |
| 1929 | } |
| 1930 | |
| 1931 | /****************************************************************************************/ |
| 1932 | /* rational number (a/b) read is taken from Vinci by Benno Bueeler and Andreas Enge */ |
| 1933 | /****************************************************************************************/ |
| 1934 | void dd_sread_rational_value (const char *s, mytype value) |
| 1935 | /* reads a rational value from the specified string "s" and assigns it to "value" */ |
| 1936 | |
| 1937 | { |
| 1938 | char *numerator_s=NULL, *denominator_s=NULL, *position; |
| 1939 | int sign = 1; |
| 1940 | double numerator, denominator; |
| 1941 | #if defined GMPRATIONAL |
| 1942 | mpz_t znum, zden; |
| 1943 | #else |
| 1944 | double rvalue; |
| 1945 | #endif |
| 1946 | |
| 1947 | /* determine the sign of the number */ |
| 1948 | numerator_s = s; |
| 1949 | if (s [0] == '-') |
| 1950 | { sign = -1; |
| 1951 | numerator_s++; |
| 1952 | } |
| 1953 | else if (s [0] == '+') |
| 1954 | numerator_s++; |
| 1955 | |
| 1956 | /* look for a sign '/' and eventually split the number in numerator and denominator */ |
| 1957 | position = strchr (numerator_s, '/'); |
| 1958 | if (position != NULL) |
| 1959 | { *position = '\0'; /* terminates the numerator */ |
| 1960 | denominator_s = position + 1; |
| 1961 | }; |
| 1962 | |
| 1963 | /* determine the floating point values of numerator and denominator */ |
| 1964 | numerator=atol (numerator_s); |
| 1965 | |
| 1966 | if (position != NULL) |
| 1967 | { |
| 1968 | denominator=atol (denominator_s); |
| 1969 | } |
| 1970 | else denominator = 1; |
| 1971 | |
| 1972 | /* |
| 1973 | fprintf(stderr,"\nrational_read: numerator %f\n",numerator); |
| 1974 | fprintf(stderr,"rational_read: denominator %f\n",denominator); |
| 1975 | fprintf(stderr,"rational_read: sign %d\n",sign); |
| 1976 | */ |
| 1977 | |
| 1978 | #if defined GMPRATIONAL |
| 1979 | mpz_init_set_str(znum,numerator_s,10); |
| 1980 | if (sign<0) mpz_neg(znum,znum); |
| 1981 | mpz_init(zden); mpz_set_ui(zden,1); |
| 1982 | if (denominator_s!=NULL) mpz_init_set_str(zden,denominator_s,10); |
| 1983 | mpq_set_num(value,znum); mpq_set_den(value,zden); |
| 1984 | mpq_canonicalize(value); |
| 1985 | mpz_clear(znum); mpz_clear(zden); |
| 1986 | /* num=(long)sign * numerator; */ |
| 1987 | /* den=(unsigned long) denominator; */ |
| 1988 | /* mpq_set_si(value, num, den); */ |
| 1989 | #elif defined GMPFLOAT |
| 1990 | rvalue=sign * numerator/ (signed long) denominator; |
| 1991 | mpf_set_d(value, rvalue); |
| 1992 | #else |
| 1993 | rvalue=sign * numerator/ (signed long) denominator; |
| 1994 | ddd_set_d(value, rvalue); |
| 1995 | #endif |
| 1996 | if (dd_debug) { |
| 1997 | fprintf(stderr,"rational_read: "); |
| 1998 | dd_WriteNumber(stderr,value); fprintf(stderr,"\n"); |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | |
| 2003 | void dd_fread_rational_value (FILE *f, mytype value) |
| 2004 | /* reads a rational value from the specified file "f" and assigns it to "value" */ |
| 2005 | |
| 2006 | { |
| 2007 | char number_s [dd_wordlenmax]; |
| 2008 | mytype rational_value; |
| 2009 | |
| 2010 | dd_init(rational_value); |
| 2011 | fscanf(f, "%s ", number_s); |
| 2012 | dd_sread_rational_value (number_s, rational_value); |
| 2013 | dd_set(value,rational_value); |
| 2014 | dd_clear(rational_value); |
| 2015 | } |
| 2016 | |
| 2017 | /****************************************************************************************/ |
| 2018 | |
| 2019 | |
| 2020 | /* end of cddio.c */ |
| 2021 | |