Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | // This file contains string processing functions related to |
| 16 | // numeric values. |
| 17 | |
| 18 | #include "absl/strings/numbers.h" |
| 19 | |
| 20 | #include <algorithm> |
| 21 | #include <cassert> |
| 22 | #include <cfloat> // for DBL_DIG and FLT_DIG |
| 23 | #include <cmath> // for HUGE_VAL |
| 24 | #include <cstdint> |
| 25 | #include <cstdio> |
| 26 | #include <cstdlib> |
| 27 | #include <cstring> |
| 28 | #include <iterator> |
| 29 | #include <limits> |
| 30 | #include <memory> |
| 31 | #include <utility> |
| 32 | |
| 33 | #include "absl/base/internal/bits.h" |
| 34 | #include "absl/base/internal/raw_logging.h" |
| 35 | #include "absl/strings/ascii.h" |
| 36 | #include "absl/strings/charconv.h" |
| 37 | #include "absl/strings/internal/memutil.h" |
| 38 | #include "absl/strings/match.h" |
| 39 | #include "absl/strings/str_cat.h" |
| 40 | |
| 41 | namespace absl { |
| 42 | |
| 43 | bool SimpleAtof(absl::string_view str, float* out) { |
| 44 | *out = 0.0; |
| 45 | str = StripAsciiWhitespace(str); |
| 46 | if (!str.empty() && str[0] == '+') { |
| 47 | str.remove_prefix(1); |
| 48 | } |
| 49 | auto result = absl::from_chars(str.data(), str.data() + str.size(), *out); |
| 50 | if (result.ec == std::errc::invalid_argument) { |
| 51 | return false; |
| 52 | } |
| 53 | if (result.ptr != str.data() + str.size()) { |
| 54 | // not all non-whitespace characters consumed |
| 55 | return false; |
| 56 | } |
| 57 | // from_chars() with DR 3081's current wording will return max() on |
| 58 | // overflow. SimpleAtof returns infinity instead. |
| 59 | if (result.ec == std::errc::result_out_of_range) { |
| 60 | if (*out > 1.0) { |
| 61 | *out = std::numeric_limits<float>::infinity(); |
| 62 | } else if (*out < -1.0) { |
| 63 | *out = -std::numeric_limits<float>::infinity(); |
| 64 | } |
| 65 | } |
| 66 | return true; |
| 67 | } |
| 68 | |
| 69 | bool SimpleAtod(absl::string_view str, double* out) { |
| 70 | *out = 0.0; |
| 71 | str = StripAsciiWhitespace(str); |
| 72 | if (!str.empty() && str[0] == '+') { |
| 73 | str.remove_prefix(1); |
| 74 | } |
| 75 | auto result = absl::from_chars(str.data(), str.data() + str.size(), *out); |
| 76 | if (result.ec == std::errc::invalid_argument) { |
| 77 | return false; |
| 78 | } |
| 79 | if (result.ptr != str.data() + str.size()) { |
| 80 | // not all non-whitespace characters consumed |
| 81 | return false; |
| 82 | } |
| 83 | // from_chars() with DR 3081's current wording will return max() on |
| 84 | // overflow. SimpleAtod returns infinity instead. |
| 85 | if (result.ec == std::errc::result_out_of_range) { |
| 86 | if (*out > 1.0) { |
| 87 | *out = std::numeric_limits<double>::infinity(); |
| 88 | } else if (*out < -1.0) { |
| 89 | *out = -std::numeric_limits<double>::infinity(); |
| 90 | } |
| 91 | } |
| 92 | return true; |
| 93 | } |
| 94 | |
| 95 | namespace { |
| 96 | |
| 97 | // Writes a two-character representation of 'i' to 'buf'. 'i' must be in the |
| 98 | // range 0 <= i < 100, and buf must have space for two characters. Example: |
| 99 | // char buf[2]; |
| 100 | // PutTwoDigits(42, buf); |
| 101 | // // buf[0] == '4' |
| 102 | // // buf[1] == '2' |
| 103 | inline void PutTwoDigits(size_t i, char* buf) { |
| 104 | static const char two_ASCII_digits[100][2] = { |
| 105 | {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, |
| 106 | {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, |
| 107 | {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, |
| 108 | {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, |
| 109 | {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, |
| 110 | {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, |
| 111 | {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, |
| 112 | {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, |
| 113 | {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, |
| 114 | {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, |
| 115 | {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, |
| 116 | {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, |
| 117 | {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, |
| 118 | {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, |
| 119 | {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, |
| 120 | {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, |
| 121 | {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, |
| 122 | {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, |
| 123 | {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, |
| 124 | {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'} |
| 125 | }; |
| 126 | assert(i < 100); |
| 127 | memcpy(buf, two_ASCII_digits[i], 2); |
| 128 | } |
| 129 | |
| 130 | } // namespace |
| 131 | |
| 132 | bool SimpleAtob(absl::string_view str, bool* out) { |
| 133 | ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr."); |
| 134 | if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") || |
| 135 | EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") || |
| 136 | EqualsIgnoreCase(str, "1")) { |
| 137 | *out = true; |
| 138 | return true; |
| 139 | } |
| 140 | if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") || |
| 141 | EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") || |
| 142 | EqualsIgnoreCase(str, "0")) { |
| 143 | *out = false; |
| 144 | return true; |
| 145 | } |
| 146 | return false; |
| 147 | } |
| 148 | |
| 149 | // ---------------------------------------------------------------------- |
| 150 | // FastIntToBuffer() overloads |
| 151 | // |
| 152 | // Like the Fast*ToBuffer() functions above, these are intended for speed. |
| 153 | // Unlike the Fast*ToBuffer() functions, however, these functions write |
| 154 | // their output to the beginning of the buffer. The caller is responsible |
| 155 | // for ensuring that the buffer has enough space to hold the output. |
| 156 | // |
| 157 | // Returns a pointer to the end of the string (i.e. the null character |
| 158 | // terminating the string). |
| 159 | // ---------------------------------------------------------------------- |
| 160 | |
| 161 | namespace { |
| 162 | |
| 163 | // Used to optimize printing a decimal number's final digit. |
| 164 | const char one_ASCII_final_digits[10][2] { |
| 165 | {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0}, |
| 166 | {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0}, |
| 167 | }; |
| 168 | |
| 169 | } // namespace |
| 170 | |
| 171 | char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) { |
| 172 | uint32_t digits; |
| 173 | // The idea of this implementation is to trim the number of divides to as few |
| 174 | // as possible, and also reducing memory stores and branches, by going in |
| 175 | // steps of two digits at a time rather than one whenever possible. |
| 176 | // The huge-number case is first, in the hopes that the compiler will output |
| 177 | // that case in one branch-free block of code, and only output conditional |
| 178 | // branches into it from below. |
| 179 | if (i >= 1000000000) { // >= 1,000,000,000 |
| 180 | digits = i / 100000000; // 100,000,000 |
| 181 | i -= digits * 100000000; |
| 182 | PutTwoDigits(digits, buffer); |
| 183 | buffer += 2; |
| 184 | lt100_000_000: |
| 185 | digits = i / 1000000; // 1,000,000 |
| 186 | i -= digits * 1000000; |
| 187 | PutTwoDigits(digits, buffer); |
| 188 | buffer += 2; |
| 189 | lt1_000_000: |
| 190 | digits = i / 10000; // 10,000 |
| 191 | i -= digits * 10000; |
| 192 | PutTwoDigits(digits, buffer); |
| 193 | buffer += 2; |
| 194 | lt10_000: |
| 195 | digits = i / 100; |
| 196 | i -= digits * 100; |
| 197 | PutTwoDigits(digits, buffer); |
| 198 | buffer += 2; |
| 199 | lt100: |
| 200 | digits = i; |
| 201 | PutTwoDigits(digits, buffer); |
| 202 | buffer += 2; |
| 203 | *buffer = 0; |
| 204 | return buffer; |
| 205 | } |
| 206 | |
| 207 | if (i < 100) { |
| 208 | digits = i; |
| 209 | if (i >= 10) goto lt100; |
| 210 | memcpy(buffer, one_ASCII_final_digits[i], 2); |
| 211 | return buffer + 1; |
| 212 | } |
| 213 | if (i < 10000) { // 10,000 |
| 214 | if (i >= 1000) goto lt10_000; |
| 215 | digits = i / 100; |
| 216 | i -= digits * 100; |
| 217 | *buffer++ = '0' + digits; |
| 218 | goto lt100; |
| 219 | } |
| 220 | if (i < 1000000) { // 1,000,000 |
| 221 | if (i >= 100000) goto lt1_000_000; |
| 222 | digits = i / 10000; // 10,000 |
| 223 | i -= digits * 10000; |
| 224 | *buffer++ = '0' + digits; |
| 225 | goto lt10_000; |
| 226 | } |
| 227 | if (i < 100000000) { // 100,000,000 |
| 228 | if (i >= 10000000) goto lt100_000_000; |
| 229 | digits = i / 1000000; // 1,000,000 |
| 230 | i -= digits * 1000000; |
| 231 | *buffer++ = '0' + digits; |
| 232 | goto lt1_000_000; |
| 233 | } |
| 234 | // we already know that i < 1,000,000,000 |
| 235 | digits = i / 100000000; // 100,000,000 |
| 236 | i -= digits * 100000000; |
| 237 | *buffer++ = '0' + digits; |
| 238 | goto lt100_000_000; |
| 239 | } |
| 240 | |
| 241 | char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) { |
| 242 | uint32_t u = i; |
| 243 | if (i < 0) { |
| 244 | *buffer++ = '-'; |
| 245 | // We need to do the negation in modular (i.e., "unsigned") |
| 246 | // arithmetic; MSVC++ apprently warns for plain "-u", so |
| 247 | // we write the equivalent expression "0 - u" instead. |
| 248 | u = 0 - u; |
| 249 | } |
| 250 | return numbers_internal::FastIntToBuffer(u, buffer); |
| 251 | } |
| 252 | |
| 253 | char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) { |
| 254 | uint32_t u32 = static_cast<uint32_t>(i); |
| 255 | if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer); |
| 256 | |
| 257 | // Here we know i has at least 10 decimal digits. |
| 258 | uint64_t top_1to11 = i / 1000000000; |
| 259 | u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000); |
| 260 | uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11); |
| 261 | |
| 262 | if (top_1to11_32 == top_1to11) { |
| 263 | buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer); |
| 264 | } else { |
| 265 | // top_1to11 has more than 32 bits too; print it in two steps. |
| 266 | uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100); |
| 267 | uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100); |
| 268 | buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer); |
| 269 | PutTwoDigits(mid_2, buffer); |
| 270 | buffer += 2; |
| 271 | } |
| 272 | |
| 273 | // We have only 9 digits now, again the maximum uint32_t can handle fully. |
| 274 | uint32_t digits = u32 / 10000000; // 10,000,000 |
| 275 | u32 -= digits * 10000000; |
| 276 | PutTwoDigits(digits, buffer); |
| 277 | buffer += 2; |
| 278 | digits = u32 / 100000; // 100,000 |
| 279 | u32 -= digits * 100000; |
| 280 | PutTwoDigits(digits, buffer); |
| 281 | buffer += 2; |
| 282 | digits = u32 / 1000; // 1,000 |
| 283 | u32 -= digits * 1000; |
| 284 | PutTwoDigits(digits, buffer); |
| 285 | buffer += 2; |
| 286 | digits = u32 / 10; |
| 287 | u32 -= digits * 10; |
| 288 | PutTwoDigits(digits, buffer); |
| 289 | buffer += 2; |
| 290 | memcpy(buffer, one_ASCII_final_digits[u32], 2); |
| 291 | return buffer + 1; |
| 292 | } |
| 293 | |
| 294 | char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) { |
| 295 | uint64_t u = i; |
| 296 | if (i < 0) { |
| 297 | *buffer++ = '-'; |
| 298 | u = 0 - u; |
| 299 | } |
| 300 | return numbers_internal::FastIntToBuffer(u, buffer); |
| 301 | } |
| 302 | |
| 303 | // Given a 128-bit number expressed as a pair of uint64_t, high half first, |
| 304 | // return that number multiplied by the given 32-bit value. If the result is |
| 305 | // too large to fit in a 128-bit number, divide it by 2 until it fits. |
| 306 | static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num, |
| 307 | uint32_t mul) { |
| 308 | uint64_t bits0_31 = num.second & 0xFFFFFFFF; |
| 309 | uint64_t bits32_63 = num.second >> 32; |
| 310 | uint64_t bits64_95 = num.first & 0xFFFFFFFF; |
| 311 | uint64_t bits96_127 = num.first >> 32; |
| 312 | |
| 313 | // The picture so far: each of these 64-bit values has only the lower 32 bits |
| 314 | // filled in. |
| 315 | // bits96_127: [ 00000000 xxxxxxxx ] |
| 316 | // bits64_95: [ 00000000 xxxxxxxx ] |
| 317 | // bits32_63: [ 00000000 xxxxxxxx ] |
| 318 | // bits0_31: [ 00000000 xxxxxxxx ] |
| 319 | |
| 320 | bits0_31 *= mul; |
| 321 | bits32_63 *= mul; |
| 322 | bits64_95 *= mul; |
| 323 | bits96_127 *= mul; |
| 324 | |
| 325 | // Now the top halves may also have value, though all 64 of their bits will |
| 326 | // never be set at the same time, since they are a result of a 32x32 bit |
| 327 | // multiply. This makes the carry calculation slightly easier. |
| 328 | // bits96_127: [ mmmmmmmm | mmmmmmmm ] |
| 329 | // bits64_95: [ | mmmmmmmm mmmmmmmm | ] |
| 330 | // bits32_63: | [ mmmmmmmm | mmmmmmmm ] |
| 331 | // bits0_31: | [ | mmmmmmmm mmmmmmmm ] |
| 332 | // eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ] |
| 333 | |
| 334 | uint64_t bits0_63 = bits0_31 + (bits32_63 << 32); |
| 335 | uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) + |
| 336 | (bits0_63 < bits0_31); |
| 337 | uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95); |
| 338 | if (bits128_up == 0) return {bits64_127, bits0_63}; |
| 339 | |
| 340 | int shift = 64 - base_internal::CountLeadingZeros64(bits128_up); |
| 341 | uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift)); |
| 342 | uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift)); |
| 343 | return {hi, lo}; |
| 344 | } |
| 345 | |
| 346 | // Compute num * 5 ^ expfive, and return the first 128 bits of the result, |
| 347 | // where the first bit is always a one. So PowFive(1, 0) starts 0b100000, |
| 348 | // PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc. |
| 349 | static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) { |
| 350 | std::pair<uint64_t, uint64_t> result = {num, 0}; |
| 351 | while (expfive >= 13) { |
| 352 | // 5^13 is the highest power of five that will fit in a 32-bit integer. |
| 353 | result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5); |
| 354 | expfive -= 13; |
| 355 | } |
| 356 | constexpr int powers_of_five[13] = { |
| 357 | 1, |
| 358 | 5, |
| 359 | 5 * 5, |
| 360 | 5 * 5 * 5, |
| 361 | 5 * 5 * 5 * 5, |
| 362 | 5 * 5 * 5 * 5 * 5, |
| 363 | 5 * 5 * 5 * 5 * 5 * 5, |
| 364 | 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 365 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 366 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 367 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 368 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5, |
| 369 | 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5}; |
| 370 | result = Mul32(result, powers_of_five[expfive & 15]); |
| 371 | int shift = base_internal::CountLeadingZeros64(result.first); |
| 372 | if (shift != 0) { |
| 373 | result.first = (result.first << shift) + (result.second >> (64 - shift)); |
| 374 | result.second = (result.second << shift); |
| 375 | } |
| 376 | return result; |
| 377 | } |
| 378 | |
| 379 | struct ExpDigits { |
| 380 | int32_t exponent; |
| 381 | char digits[6]; |
| 382 | }; |
| 383 | |
| 384 | // SplitToSix converts value, a positive double-precision floating-point number, |
| 385 | // into a base-10 exponent and 6 ASCII digits, where the first digit is never |
| 386 | // zero. For example, SplitToSix(1) returns an exponent of zero and a digits |
| 387 | // array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between |
| 388 | // two possible representations, e.g. value = 100000.5, then "round to even" is |
| 389 | // performed. |
| 390 | static ExpDigits SplitToSix(const double value) { |
| 391 | ExpDigits exp_dig; |
| 392 | int exp = 5; |
| 393 | double d = value; |
| 394 | // First step: calculate a close approximation of the output, where the |
| 395 | // value d will be between 100,000 and 999,999, representing the digits |
| 396 | // in the output ASCII array, and exp is the base-10 exponent. It would be |
| 397 | // faster to use a table here, and to look up the base-2 exponent of value, |
| 398 | // however value is an IEEE-754 64-bit number, so the table would have 2,000 |
| 399 | // entries, which is not cache-friendly. |
| 400 | if (d >= 999999.5) { |
| 401 | if (d >= 1e+261) exp += 256, d *= 1e-256; |
| 402 | if (d >= 1e+133) exp += 128, d *= 1e-128; |
| 403 | if (d >= 1e+69) exp += 64, d *= 1e-64; |
| 404 | if (d >= 1e+37) exp += 32, d *= 1e-32; |
| 405 | if (d >= 1e+21) exp += 16, d *= 1e-16; |
| 406 | if (d >= 1e+13) exp += 8, d *= 1e-8; |
| 407 | if (d >= 1e+9) exp += 4, d *= 1e-4; |
| 408 | if (d >= 1e+7) exp += 2, d *= 1e-2; |
| 409 | if (d >= 1e+6) exp += 1, d *= 1e-1; |
| 410 | } else { |
| 411 | if (d < 1e-250) exp -= 256, d *= 1e256; |
| 412 | if (d < 1e-122) exp -= 128, d *= 1e128; |
| 413 | if (d < 1e-58) exp -= 64, d *= 1e64; |
| 414 | if (d < 1e-26) exp -= 32, d *= 1e32; |
| 415 | if (d < 1e-10) exp -= 16, d *= 1e16; |
| 416 | if (d < 1e-2) exp -= 8, d *= 1e8; |
| 417 | if (d < 1e+2) exp -= 4, d *= 1e4; |
| 418 | if (d < 1e+4) exp -= 2, d *= 1e2; |
| 419 | if (d < 1e+5) exp -= 1, d *= 1e1; |
| 420 | } |
| 421 | // At this point, d is in the range [99999.5..999999.5) and exp is in the |
| 422 | // range [-324..308]. Since we need to round d up, we want to add a half |
| 423 | // and truncate. |
| 424 | // However, the technique above may have lost some precision, due to its |
| 425 | // repeated multiplication by constants that each may be off by half a bit |
| 426 | // of precision. This only matters if we're close to the edge though. |
| 427 | // Since we'd like to know if the fractional part of d is close to a half, |
| 428 | // we multiply it by 65536 and see if the fractional part is close to 32768. |
| 429 | // (The number doesn't have to be a power of two,but powers of two are faster) |
| 430 | uint64_t d64k = d * 65536; |
| 431 | int dddddd; // A 6-digit decimal integer. |
| 432 | if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) { |
| 433 | // OK, it's fairly likely that precision was lost above, which is |
| 434 | // not a surprise given only 52 mantissa bits are available. Therefore |
| 435 | // redo the calculation using 128-bit numbers. (64 bits are not enough). |
| 436 | |
| 437 | // Start out with digits rounded down; maybe add one below. |
| 438 | dddddd = static_cast<int>(d64k / 65536); |
| 439 | |
| 440 | // mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual |
| 441 | // value we're representing, of course, is M.mmm... * 2^exp2. |
| 442 | int exp2; |
| 443 | double m = std::frexp(value, &exp2); |
| 444 | uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0); |
| 445 | // std::frexp returns an m value in the range [0.5, 1.0), however we |
| 446 | // can't multiply it by 2^64 and convert to an integer because some FPUs |
| 447 | // throw an exception when converting an number higher than 2^63 into an |
| 448 | // integer - even an unsigned 64-bit integer! Fortunately it doesn't matter |
| 449 | // since m only has 52 significant bits anyway. |
| 450 | mantissa <<= 1; |
| 451 | exp2 -= 64; // not needed, but nice for debugging |
| 452 | |
| 453 | // OK, we are here to compare: |
| 454 | // (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2 |
| 455 | // so we can round up dddddd if appropriate. Those values span the full |
| 456 | // range of 600 orders of magnitude of IEE 64-bit floating-point. |
| 457 | // Fortunately, we already know they are very close, so we don't need to |
| 458 | // track the base-2 exponent of both sides. This greatly simplifies the |
| 459 | // the math since the 2^exp2 calculation is unnecessary and the power-of-10 |
| 460 | // calculation can become a power-of-5 instead. |
| 461 | |
| 462 | std::pair<uint64_t, uint64_t> edge, val; |
| 463 | if (exp >= 6) { |
| 464 | // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa |
| 465 | // Since we're tossing powers of two, 2 * dddddd + 1 is the |
| 466 | // same as dddddd + 0.5 |
| 467 | edge = PowFive(2 * dddddd + 1, exp - 5); |
| 468 | |
| 469 | val.first = mantissa; |
| 470 | val.second = 0; |
| 471 | } else { |
| 472 | // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did |
| 473 | // above because (exp - 5) is negative. So we compare (dddddd + 0.5) to |
| 474 | // mantissa * 5 ^ (5 - exp) |
| 475 | edge = PowFive(2 * dddddd + 1, 0); |
| 476 | |
| 477 | val = PowFive(mantissa, 5 - exp); |
| 478 | } |
| 479 | // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first, |
| 480 | // val.second, edge.first, edge.second); |
| 481 | if (val > edge) { |
| 482 | dddddd++; |
| 483 | } else if (val == edge) { |
| 484 | dddddd += (dddddd & 1); |
| 485 | } |
| 486 | } else { |
| 487 | // Here, we are not close to the edge. |
| 488 | dddddd = static_cast<int>((d64k + 32768) / 65536); |
| 489 | } |
| 490 | if (dddddd == 1000000) { |
| 491 | dddddd = 100000; |
| 492 | exp += 1; |
| 493 | } |
| 494 | exp_dig.exponent = exp; |
| 495 | |
| 496 | int two_digits = dddddd / 10000; |
| 497 | dddddd -= two_digits * 10000; |
| 498 | PutTwoDigits(two_digits, &exp_dig.digits[0]); |
| 499 | |
| 500 | two_digits = dddddd / 100; |
| 501 | dddddd -= two_digits * 100; |
| 502 | PutTwoDigits(two_digits, &exp_dig.digits[2]); |
| 503 | |
| 504 | PutTwoDigits(dddddd, &exp_dig.digits[4]); |
| 505 | return exp_dig; |
| 506 | } |
| 507 | |
| 508 | // Helper function for fast formatting of floating-point. |
| 509 | // The result is the same as "%g", a.k.a. "%.6g". |
| 510 | size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) { |
| 511 | static_assert(std::numeric_limits<float>::is_iec559, |
| 512 | "IEEE-754/IEC-559 support only"); |
| 513 | |
| 514 | char* out = buffer; // we write data to out, incrementing as we go, but |
| 515 | // FloatToBuffer always returns the address of the buffer |
| 516 | // passed in. |
| 517 | |
| 518 | if (std::isnan(d)) { |
| 519 | strcpy(out, "nan"); // NOLINT(runtime/printf) |
| 520 | return 3; |
| 521 | } |
| 522 | if (d == 0) { // +0 and -0 are handled here |
| 523 | if (std::signbit(d)) *out++ = '-'; |
| 524 | *out++ = '0'; |
| 525 | *out = 0; |
| 526 | return out - buffer; |
| 527 | } |
| 528 | if (d < 0) { |
| 529 | *out++ = '-'; |
| 530 | d = -d; |
| 531 | } |
| 532 | if (std::isinf(d)) { |
| 533 | strcpy(out, "inf"); // NOLINT(runtime/printf) |
| 534 | return out + 3 - buffer; |
| 535 | } |
| 536 | |
| 537 | auto exp_dig = SplitToSix(d); |
| 538 | int exp = exp_dig.exponent; |
| 539 | const char* digits = exp_dig.digits; |
| 540 | out[0] = '0'; |
| 541 | out[1] = '.'; |
| 542 | switch (exp) { |
| 543 | case 5: |
| 544 | memcpy(out, &digits[0], 6), out += 6; |
| 545 | *out = 0; |
| 546 | return out - buffer; |
| 547 | case 4: |
| 548 | memcpy(out, &digits[0], 5), out += 5; |
| 549 | if (digits[5] != '0') { |
| 550 | *out++ = '.'; |
| 551 | *out++ = digits[5]; |
| 552 | } |
| 553 | *out = 0; |
| 554 | return out - buffer; |
| 555 | case 3: |
| 556 | memcpy(out, &digits[0], 4), out += 4; |
| 557 | if ((digits[5] | digits[4]) != '0') { |
| 558 | *out++ = '.'; |
| 559 | *out++ = digits[4]; |
| 560 | if (digits[5] != '0') *out++ = digits[5]; |
| 561 | } |
| 562 | *out = 0; |
| 563 | return out - buffer; |
| 564 | case 2: |
| 565 | memcpy(out, &digits[0], 3), out += 3; |
| 566 | *out++ = '.'; |
| 567 | memcpy(out, &digits[3], 3); |
| 568 | out += 3; |
| 569 | while (out[-1] == '0') --out; |
| 570 | if (out[-1] == '.') --out; |
| 571 | *out = 0; |
| 572 | return out - buffer; |
| 573 | case 1: |
| 574 | memcpy(out, &digits[0], 2), out += 2; |
| 575 | *out++ = '.'; |
| 576 | memcpy(out, &digits[2], 4); |
| 577 | out += 4; |
| 578 | while (out[-1] == '0') --out; |
| 579 | if (out[-1] == '.') --out; |
| 580 | *out = 0; |
| 581 | return out - buffer; |
| 582 | case 0: |
| 583 | memcpy(out, &digits[0], 1), out += 1; |
| 584 | *out++ = '.'; |
| 585 | memcpy(out, &digits[1], 5); |
| 586 | out += 5; |
| 587 | while (out[-1] == '0') --out; |
| 588 | if (out[-1] == '.') --out; |
| 589 | *out = 0; |
| 590 | return out - buffer; |
| 591 | case -4: |
| 592 | out[2] = '0'; |
| 593 | ++out; |
| 594 | ABSL_FALLTHROUGH_INTENDED; |
| 595 | case -3: |
| 596 | out[2] = '0'; |
| 597 | ++out; |
| 598 | ABSL_FALLTHROUGH_INTENDED; |
| 599 | case -2: |
| 600 | out[2] = '0'; |
| 601 | ++out; |
| 602 | ABSL_FALLTHROUGH_INTENDED; |
| 603 | case -1: |
| 604 | out += 2; |
| 605 | memcpy(out, &digits[0], 6); |
| 606 | out += 6; |
| 607 | while (out[-1] == '0') --out; |
| 608 | *out = 0; |
| 609 | return out - buffer; |
| 610 | } |
| 611 | assert(exp < -4 || exp >= 6); |
| 612 | out[0] = digits[0]; |
| 613 | assert(out[1] == '.'); |
| 614 | out += 2; |
| 615 | memcpy(out, &digits[1], 5), out += 5; |
| 616 | while (out[-1] == '0') --out; |
| 617 | if (out[-1] == '.') --out; |
| 618 | *out++ = 'e'; |
| 619 | if (exp > 0) { |
| 620 | *out++ = '+'; |
| 621 | } else { |
| 622 | *out++ = '-'; |
| 623 | exp = -exp; |
| 624 | } |
| 625 | if (exp > 99) { |
| 626 | int dig1 = exp / 100; |
| 627 | exp -= dig1 * 100; |
| 628 | *out++ = '0' + dig1; |
| 629 | } |
| 630 | PutTwoDigits(exp, out); |
| 631 | out += 2; |
| 632 | *out = 0; |
| 633 | return out - buffer; |
| 634 | } |
| 635 | |
| 636 | namespace { |
| 637 | // Represents integer values of digits. |
| 638 | // Uses 36 to indicate an invalid character since we support |
| 639 | // bases up to 36. |
| 640 | static const int8_t kAsciiToInt[256] = { |
| 641 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s. |
| 642 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 643 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5, |
| 644 | 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, |
| 645 | 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, |
| 646 | 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, |
| 647 | 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36, |
| 648 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 649 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 650 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 651 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 652 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 653 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, |
| 654 | 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36}; |
| 655 | |
| 656 | // Parse the sign and optional hex or oct prefix in text. |
| 657 | inline bool safe_parse_sign_and_base(absl::string_view* text /*inout*/, |
| 658 | int* base_ptr /*inout*/, |
| 659 | bool* negative_ptr /*output*/) { |
| 660 | if (text->data() == nullptr) { |
| 661 | return false; |
| 662 | } |
| 663 | |
| 664 | const char* start = text->data(); |
| 665 | const char* end = start + text->size(); |
| 666 | int base = *base_ptr; |
| 667 | |
| 668 | // Consume whitespace. |
| 669 | while (start < end && absl::ascii_isspace(start[0])) { |
| 670 | ++start; |
| 671 | } |
| 672 | while (start < end && absl::ascii_isspace(end[-1])) { |
| 673 | --end; |
| 674 | } |
| 675 | if (start >= end) { |
| 676 | return false; |
| 677 | } |
| 678 | |
| 679 | // Consume sign. |
| 680 | *negative_ptr = (start[0] == '-'); |
| 681 | if (*negative_ptr || start[0] == '+') { |
| 682 | ++start; |
| 683 | if (start >= end) { |
| 684 | return false; |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | // Consume base-dependent prefix. |
| 689 | // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10 |
| 690 | // base 16: "0x" -> base 16 |
| 691 | // Also validate the base. |
| 692 | if (base == 0) { |
| 693 | if (end - start >= 2 && start[0] == '0' && |
| 694 | (start[1] == 'x' || start[1] == 'X')) { |
| 695 | base = 16; |
| 696 | start += 2; |
| 697 | if (start >= end) { |
| 698 | // "0x" with no digits after is invalid. |
| 699 | return false; |
| 700 | } |
| 701 | } else if (end - start >= 1 && start[0] == '0') { |
| 702 | base = 8; |
| 703 | start += 1; |
| 704 | } else { |
| 705 | base = 10; |
| 706 | } |
| 707 | } else if (base == 16) { |
| 708 | if (end - start >= 2 && start[0] == '0' && |
| 709 | (start[1] == 'x' || start[1] == 'X')) { |
| 710 | start += 2; |
| 711 | if (start >= end) { |
| 712 | // "0x" with no digits after is invalid. |
| 713 | return false; |
| 714 | } |
| 715 | } |
| 716 | } else if (base >= 2 && base <= 36) { |
| 717 | // okay |
| 718 | } else { |
| 719 | return false; |
| 720 | } |
| 721 | *text = absl::string_view(start, end - start); |
| 722 | *base_ptr = base; |
| 723 | return true; |
| 724 | } |
| 725 | |
| 726 | // Consume digits. |
| 727 | // |
| 728 | // The classic loop: |
| 729 | // |
| 730 | // for each digit |
| 731 | // value = value * base + digit |
| 732 | // value *= sign |
| 733 | // |
| 734 | // The classic loop needs overflow checking. It also fails on the most |
| 735 | // negative integer, -2147483648 in 32-bit two's complement representation. |
| 736 | // |
| 737 | // My improved loop: |
| 738 | // |
| 739 | // if (!negative) |
| 740 | // for each digit |
| 741 | // value = value * base |
| 742 | // value = value + digit |
| 743 | // else |
| 744 | // for each digit |
| 745 | // value = value * base |
| 746 | // value = value - digit |
| 747 | // |
| 748 | // Overflow checking becomes simple. |
| 749 | |
| 750 | // Lookup tables per IntType: |
| 751 | // vmax/base and vmin/base are precomputed because division costs at least 8ns. |
| 752 | // TODO(junyer): Doing this per base instead (i.e. an array of structs, not a |
| 753 | // struct of arrays) would probably be better in terms of d-cache for the most |
| 754 | // commonly used bases. |
| 755 | template <typename IntType> |
| 756 | struct LookupTables { |
| 757 | static const IntType kVmaxOverBase[]; |
| 758 | static const IntType kVminOverBase[]; |
| 759 | }; |
| 760 | |
| 761 | // An array initializer macro for X/base where base in [0, 36]. |
| 762 | // However, note that lookups for base in [0, 1] should never happen because |
| 763 | // base has been validated to be in [2, 36] by safe_parse_sign_and_base(). |
| 764 | #define X_OVER_BASE_INITIALIZER(X) \ |
| 765 | { \ |
| 766 | 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \ |
| 767 | X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \ |
| 768 | X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \ |
| 769 | X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \ |
| 770 | X / 35, X / 36, \ |
| 771 | } |
| 772 | |
| 773 | template <typename IntType> |
| 774 | const IntType LookupTables<IntType>::kVmaxOverBase[] = |
| 775 | X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max()); |
| 776 | |
| 777 | template <typename IntType> |
| 778 | const IntType LookupTables<IntType>::kVminOverBase[] = |
| 779 | X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min()); |
| 780 | |
| 781 | #undef X_OVER_BASE_INITIALIZER |
| 782 | |
| 783 | template <typename IntType> |
| 784 | inline bool safe_parse_positive_int(absl::string_view text, int base, |
| 785 | IntType* value_p) { |
| 786 | IntType value = 0; |
| 787 | const IntType vmax = std::numeric_limits<IntType>::max(); |
| 788 | assert(vmax > 0); |
| 789 | assert(base >= 0); |
| 790 | assert(vmax >= static_cast<IntType>(base)); |
| 791 | const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base]; |
| 792 | const char* start = text.data(); |
| 793 | const char* end = start + text.size(); |
| 794 | // loop over digits |
| 795 | for (; start < end; ++start) { |
| 796 | unsigned char c = static_cast<unsigned char>(start[0]); |
| 797 | int digit = kAsciiToInt[c]; |
| 798 | if (digit >= base) { |
| 799 | *value_p = value; |
| 800 | return false; |
| 801 | } |
| 802 | if (value > vmax_over_base) { |
| 803 | *value_p = vmax; |
| 804 | return false; |
| 805 | } |
| 806 | value *= base; |
| 807 | if (value > vmax - digit) { |
| 808 | *value_p = vmax; |
| 809 | return false; |
| 810 | } |
| 811 | value += digit; |
| 812 | } |
| 813 | *value_p = value; |
| 814 | return true; |
| 815 | } |
| 816 | |
| 817 | template <typename IntType> |
| 818 | inline bool safe_parse_negative_int(absl::string_view text, int base, |
| 819 | IntType* value_p) { |
| 820 | IntType value = 0; |
| 821 | const IntType vmin = std::numeric_limits<IntType>::min(); |
| 822 | assert(vmin < 0); |
| 823 | assert(vmin <= 0 - base); |
| 824 | IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base]; |
| 825 | // 2003 c++ standard [expr.mul] |
| 826 | // "... the sign of the remainder is implementation-defined." |
| 827 | // Although (vmin/base)*base + vmin%base is always vmin. |
| 828 | // 2011 c++ standard tightens the spec but we cannot rely on it. |
| 829 | // TODO(junyer): Handle this in the lookup table generation. |
| 830 | if (vmin % base > 0) { |
| 831 | vmin_over_base += 1; |
| 832 | } |
| 833 | const char* start = text.data(); |
| 834 | const char* end = start + text.size(); |
| 835 | // loop over digits |
| 836 | for (; start < end; ++start) { |
| 837 | unsigned char c = static_cast<unsigned char>(start[0]); |
| 838 | int digit = kAsciiToInt[c]; |
| 839 | if (digit >= base) { |
| 840 | *value_p = value; |
| 841 | return false; |
| 842 | } |
| 843 | if (value < vmin_over_base) { |
| 844 | *value_p = vmin; |
| 845 | return false; |
| 846 | } |
| 847 | value *= base; |
| 848 | if (value < vmin + digit) { |
| 849 | *value_p = vmin; |
| 850 | return false; |
| 851 | } |
| 852 | value -= digit; |
| 853 | } |
| 854 | *value_p = value; |
| 855 | return true; |
| 856 | } |
| 857 | |
| 858 | // Input format based on POSIX.1-2008 strtol |
| 859 | // http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html |
| 860 | template <typename IntType> |
| 861 | inline bool safe_int_internal(absl::string_view text, IntType* value_p, |
| 862 | int base) { |
| 863 | *value_p = 0; |
| 864 | bool negative; |
| 865 | if (!safe_parse_sign_and_base(&text, &base, &negative)) { |
| 866 | return false; |
| 867 | } |
| 868 | if (!negative) { |
| 869 | return safe_parse_positive_int(text, base, value_p); |
| 870 | } else { |
| 871 | return safe_parse_negative_int(text, base, value_p); |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | template <typename IntType> |
| 876 | inline bool safe_uint_internal(absl::string_view text, IntType* value_p, |
| 877 | int base) { |
| 878 | *value_p = 0; |
| 879 | bool negative; |
| 880 | if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) { |
| 881 | return false; |
| 882 | } |
| 883 | return safe_parse_positive_int(text, base, value_p); |
| 884 | } |
| 885 | } // anonymous namespace |
| 886 | |
| 887 | namespace numbers_internal { |
| 888 | bool safe_strto32_base(absl::string_view text, int32_t* value, int base) { |
| 889 | return safe_int_internal<int32_t>(text, value, base); |
| 890 | } |
| 891 | |
| 892 | bool safe_strto64_base(absl::string_view text, int64_t* value, int base) { |
| 893 | return safe_int_internal<int64_t>(text, value, base); |
| 894 | } |
| 895 | |
| 896 | bool safe_strtou32_base(absl::string_view text, uint32_t* value, int base) { |
| 897 | return safe_uint_internal<uint32_t>(text, value, base); |
| 898 | } |
| 899 | |
| 900 | bool safe_strtou64_base(absl::string_view text, uint64_t* value, int base) { |
| 901 | return safe_uint_internal<uint64_t>(text, value, base); |
| 902 | } |
| 903 | } // namespace numbers_internal |
| 904 | |
| 905 | } // namespace absl |