Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/strings/escaping.h" |
| 16 | |
| 17 | #include <algorithm> |
| 18 | #include <cassert> |
| 19 | #include <cstdint> |
| 20 | #include <cstring> |
| 21 | #include <iterator> |
| 22 | #include <limits> |
| 23 | #include <string> |
| 24 | |
| 25 | #include "absl/base/internal/endian.h" |
| 26 | #include "absl/base/internal/raw_logging.h" |
| 27 | #include "absl/base/internal/unaligned_access.h" |
| 28 | #include "absl/strings/internal/char_map.h" |
| 29 | #include "absl/strings/internal/resize_uninitialized.h" |
| 30 | #include "absl/strings/internal/utf8.h" |
| 31 | #include "absl/strings/str_cat.h" |
| 32 | #include "absl/strings/str_join.h" |
| 33 | #include "absl/strings/string_view.h" |
| 34 | |
| 35 | namespace absl { |
| 36 | namespace { |
| 37 | |
| 38 | // Digit conversion. |
| 39 | constexpr char kHexChar[] = "0123456789abcdef"; |
| 40 | |
| 41 | constexpr char kHexTable[513] = |
| 42 | "000102030405060708090a0b0c0d0e0f" |
| 43 | "101112131415161718191a1b1c1d1e1f" |
| 44 | "202122232425262728292a2b2c2d2e2f" |
| 45 | "303132333435363738393a3b3c3d3e3f" |
| 46 | "404142434445464748494a4b4c4d4e4f" |
| 47 | "505152535455565758595a5b5c5d5e5f" |
| 48 | "606162636465666768696a6b6c6d6e6f" |
| 49 | "707172737475767778797a7b7c7d7e7f" |
| 50 | "808182838485868788898a8b8c8d8e8f" |
| 51 | "909192939495969798999a9b9c9d9e9f" |
| 52 | "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf" |
| 53 | "b0b1b2b3b4b5b6b7b8b9babbbcbdbebf" |
| 54 | "c0c1c2c3c4c5c6c7c8c9cacbcccdcecf" |
| 55 | "d0d1d2d3d4d5d6d7d8d9dadbdcdddedf" |
| 56 | "e0e1e2e3e4e5e6e7e8e9eaebecedeeef" |
| 57 | "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff"; |
| 58 | |
| 59 | // These are used for the leave_nulls_escaped argument to CUnescapeInternal(). |
| 60 | constexpr bool kUnescapeNulls = false; |
| 61 | |
| 62 | inline bool is_octal_digit(char c) { return ('0' <= c) && (c <= '7'); } |
| 63 | |
| 64 | inline int hex_digit_to_int(char c) { |
| 65 | static_assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61, |
| 66 | "Character set must be ASCII."); |
| 67 | assert(absl::ascii_isxdigit(c)); |
| 68 | int x = static_cast<unsigned char>(c); |
| 69 | if (x > '9') { |
| 70 | x += 9; |
| 71 | } |
| 72 | return x & 0xf; |
| 73 | } |
| 74 | |
| 75 | inline bool IsSurrogate(char32_t c, absl::string_view src, std::string* error) { |
| 76 | if (c >= 0xD800 && c <= 0xDFFF) { |
| 77 | if (error) { |
| 78 | *error = absl::StrCat("invalid surrogate character (0xD800-DFFF): \\", |
| 79 | src); |
| 80 | } |
| 81 | return true; |
| 82 | } |
| 83 | return false; |
| 84 | } |
| 85 | |
| 86 | // ---------------------------------------------------------------------- |
| 87 | // CUnescapeInternal() |
| 88 | // Implements both CUnescape() and CUnescapeForNullTerminatedString(). |
| 89 | // |
| 90 | // Unescapes C escape sequences and is the reverse of CEscape(). |
| 91 | // |
| 92 | // If 'source' is valid, stores the unescaped string and its size in |
| 93 | // 'dest' and 'dest_len' respectively, and returns true. Otherwise |
| 94 | // returns false and optionally stores the error description in |
| 95 | // 'error'. Set 'error' to nullptr to disable error reporting. |
| 96 | // |
| 97 | // 'dest' should point to a buffer that is at least as big as 'source'. |
| 98 | // 'source' and 'dest' may be the same. |
| 99 | // |
| 100 | // NOTE: any changes to this function must also be reflected in the older |
| 101 | // UnescapeCEscapeSequences(). |
| 102 | // ---------------------------------------------------------------------- |
| 103 | bool CUnescapeInternal(absl::string_view source, bool leave_nulls_escaped, |
| 104 | char* dest, ptrdiff_t* dest_len, std::string* error) { |
| 105 | char* d = dest; |
| 106 | const char* p = source.data(); |
| 107 | const char* end = p + source.size(); |
| 108 | const char* last_byte = end - 1; |
| 109 | |
| 110 | // Small optimization for case where source = dest and there's no escaping |
| 111 | while (p == d && p < end && *p != '\\') p++, d++; |
| 112 | |
| 113 | while (p < end) { |
| 114 | if (*p != '\\') { |
| 115 | *d++ = *p++; |
| 116 | } else { |
| 117 | if (++p > last_byte) { // skip past the '\\' |
| 118 | if (error) *error = "String cannot end with \\"; |
| 119 | return false; |
| 120 | } |
| 121 | switch (*p) { |
| 122 | case 'a': *d++ = '\a'; break; |
| 123 | case 'b': *d++ = '\b'; break; |
| 124 | case 'f': *d++ = '\f'; break; |
| 125 | case 'n': *d++ = '\n'; break; |
| 126 | case 'r': *d++ = '\r'; break; |
| 127 | case 't': *d++ = '\t'; break; |
| 128 | case 'v': *d++ = '\v'; break; |
| 129 | case '\\': *d++ = '\\'; break; |
| 130 | case '?': *d++ = '\?'; break; // \? Who knew? |
| 131 | case '\'': *d++ = '\''; break; |
| 132 | case '"': *d++ = '\"'; break; |
| 133 | case '0': |
| 134 | case '1': |
| 135 | case '2': |
| 136 | case '3': |
| 137 | case '4': |
| 138 | case '5': |
| 139 | case '6': |
| 140 | case '7': { |
| 141 | // octal digit: 1 to 3 digits |
| 142 | const char* octal_start = p; |
| 143 | unsigned int ch = *p - '0'; |
| 144 | if (p < last_byte && is_octal_digit(p[1])) ch = ch * 8 + *++p - '0'; |
| 145 | if (p < last_byte && is_octal_digit(p[1])) |
| 146 | ch = ch * 8 + *++p - '0'; // now points at last digit |
| 147 | if (ch > 0xff) { |
| 148 | if (error) { |
| 149 | *error = "Value of \\" + |
| 150 | std::string(octal_start, p + 1 - octal_start) + |
| 151 | " exceeds 0xff"; |
| 152 | } |
| 153 | return false; |
| 154 | } |
| 155 | if ((ch == 0) && leave_nulls_escaped) { |
| 156 | // Copy the escape sequence for the null character |
| 157 | const ptrdiff_t octal_size = p + 1 - octal_start; |
| 158 | *d++ = '\\'; |
| 159 | memcpy(d, octal_start, octal_size); |
| 160 | d += octal_size; |
| 161 | break; |
| 162 | } |
| 163 | *d++ = ch; |
| 164 | break; |
| 165 | } |
| 166 | case 'x': |
| 167 | case 'X': { |
| 168 | if (p >= last_byte) { |
| 169 | if (error) *error = "String cannot end with \\x"; |
| 170 | return false; |
| 171 | } else if (!absl::ascii_isxdigit(p[1])) { |
| 172 | if (error) *error = "\\x cannot be followed by a non-hex digit"; |
| 173 | return false; |
| 174 | } |
| 175 | unsigned int ch = 0; |
| 176 | const char* hex_start = p; |
| 177 | while (p < last_byte && absl::ascii_isxdigit(p[1])) |
| 178 | // Arbitrarily many hex digits |
| 179 | ch = (ch << 4) + hex_digit_to_int(*++p); |
| 180 | if (ch > 0xFF) { |
| 181 | if (error) { |
| 182 | *error = "Value of \\" + |
| 183 | std::string(hex_start, p + 1 - hex_start) + |
| 184 | " exceeds 0xff"; |
| 185 | } |
| 186 | return false; |
| 187 | } |
| 188 | if ((ch == 0) && leave_nulls_escaped) { |
| 189 | // Copy the escape sequence for the null character |
| 190 | const ptrdiff_t hex_size = p + 1 - hex_start; |
| 191 | *d++ = '\\'; |
| 192 | memcpy(d, hex_start, hex_size); |
| 193 | d += hex_size; |
| 194 | break; |
| 195 | } |
| 196 | *d++ = ch; |
| 197 | break; |
| 198 | } |
| 199 | case 'u': { |
| 200 | // \uhhhh => convert 4 hex digits to UTF-8 |
| 201 | char32_t rune = 0; |
| 202 | const char* hex_start = p; |
| 203 | if (p + 4 >= end) { |
| 204 | if (error) { |
| 205 | *error = "\\u must be followed by 4 hex digits: \\" + |
| 206 | std::string(hex_start, p + 1 - hex_start); |
| 207 | } |
| 208 | return false; |
| 209 | } |
| 210 | for (int i = 0; i < 4; ++i) { |
| 211 | // Look one char ahead. |
| 212 | if (absl::ascii_isxdigit(p[1])) { |
| 213 | rune = (rune << 4) + hex_digit_to_int(*++p); // Advance p. |
| 214 | } else { |
| 215 | if (error) { |
| 216 | *error = "\\u must be followed by 4 hex digits: \\" + |
| 217 | std::string(hex_start, p + 1 - hex_start); |
| 218 | } |
| 219 | return false; |
| 220 | } |
| 221 | } |
| 222 | if ((rune == 0) && leave_nulls_escaped) { |
| 223 | // Copy the escape sequence for the null character |
| 224 | *d++ = '\\'; |
| 225 | memcpy(d, hex_start, 5); // u0000 |
| 226 | d += 5; |
| 227 | break; |
| 228 | } |
| 229 | if (IsSurrogate(rune, absl::string_view(hex_start, 5), error)) { |
| 230 | return false; |
| 231 | } |
| 232 | d += strings_internal::EncodeUTF8Char(d, rune); |
| 233 | break; |
| 234 | } |
| 235 | case 'U': { |
| 236 | // \Uhhhhhhhh => convert 8 hex digits to UTF-8 |
| 237 | char32_t rune = 0; |
| 238 | const char* hex_start = p; |
| 239 | if (p + 8 >= end) { |
| 240 | if (error) { |
| 241 | *error = "\\U must be followed by 8 hex digits: \\" + |
| 242 | std::string(hex_start, p + 1 - hex_start); |
| 243 | } |
| 244 | return false; |
| 245 | } |
| 246 | for (int i = 0; i < 8; ++i) { |
| 247 | // Look one char ahead. |
| 248 | if (absl::ascii_isxdigit(p[1])) { |
| 249 | // Don't change rune until we're sure this |
| 250 | // is within the Unicode limit, but do advance p. |
| 251 | uint32_t newrune = (rune << 4) + hex_digit_to_int(*++p); |
| 252 | if (newrune > 0x10FFFF) { |
| 253 | if (error) { |
| 254 | *error = "Value of \\" + |
| 255 | std::string(hex_start, p + 1 - hex_start) + |
| 256 | " exceeds Unicode limit (0x10FFFF)"; |
| 257 | } |
| 258 | return false; |
| 259 | } else { |
| 260 | rune = newrune; |
| 261 | } |
| 262 | } else { |
| 263 | if (error) { |
| 264 | *error = "\\U must be followed by 8 hex digits: \\" + |
| 265 | std::string(hex_start, p + 1 - hex_start); |
| 266 | } |
| 267 | return false; |
| 268 | } |
| 269 | } |
| 270 | if ((rune == 0) && leave_nulls_escaped) { |
| 271 | // Copy the escape sequence for the null character |
| 272 | *d++ = '\\'; |
| 273 | memcpy(d, hex_start, 9); // U00000000 |
| 274 | d += 9; |
| 275 | break; |
| 276 | } |
| 277 | if (IsSurrogate(rune, absl::string_view(hex_start, 9), error)) { |
| 278 | return false; |
| 279 | } |
| 280 | d += strings_internal::EncodeUTF8Char(d, rune); |
| 281 | break; |
| 282 | } |
| 283 | default: { |
| 284 | if (error) *error = std::string("Unknown escape sequence: \\") + *p; |
| 285 | return false; |
| 286 | } |
| 287 | } |
| 288 | p++; // read past letter we escaped |
| 289 | } |
| 290 | } |
| 291 | *dest_len = d - dest; |
| 292 | return true; |
| 293 | } |
| 294 | |
| 295 | // ---------------------------------------------------------------------- |
| 296 | // CUnescapeInternal() |
| 297 | // |
| 298 | // Same as above but uses a std::string for output. 'source' and 'dest' |
| 299 | // may be the same. |
| 300 | // ---------------------------------------------------------------------- |
| 301 | bool CUnescapeInternal(absl::string_view source, bool leave_nulls_escaped, |
| 302 | std::string* dest, std::string* error) { |
| 303 | strings_internal::STLStringResizeUninitialized(dest, source.size()); |
| 304 | |
| 305 | ptrdiff_t dest_size; |
| 306 | if (!CUnescapeInternal(source, |
| 307 | leave_nulls_escaped, |
| 308 | &(*dest)[0], |
| 309 | &dest_size, |
| 310 | error)) { |
| 311 | return false; |
| 312 | } |
| 313 | dest->erase(dest_size); |
| 314 | return true; |
| 315 | } |
| 316 | |
| 317 | // ---------------------------------------------------------------------- |
| 318 | // CEscape() |
| 319 | // CHexEscape() |
| 320 | // Utf8SafeCEscape() |
| 321 | // Utf8SafeCHexEscape() |
| 322 | // Escapes 'src' using C-style escape sequences. This is useful for |
| 323 | // preparing query flags. The 'Hex' version uses hexadecimal rather than |
| 324 | // octal sequences. The 'Utf8Safe' version does not touch UTF-8 bytes. |
| 325 | // |
| 326 | // Escaped chars: \n, \r, \t, ", ', \, and !absl::ascii_isprint(). |
| 327 | // ---------------------------------------------------------------------- |
| 328 | std::string CEscapeInternal(absl::string_view src, bool use_hex, |
| 329 | bool utf8_safe) { |
| 330 | std::string dest; |
| 331 | bool last_hex_escape = false; // true if last output char was \xNN. |
| 332 | |
| 333 | for (unsigned char c : src) { |
| 334 | bool is_hex_escape = false; |
| 335 | switch (c) { |
| 336 | case '\n': dest.append("\\" "n"); break; |
| 337 | case '\r': dest.append("\\" "r"); break; |
| 338 | case '\t': dest.append("\\" "t"); break; |
| 339 | case '\"': dest.append("\\" "\""); break; |
| 340 | case '\'': dest.append("\\" "'"); break; |
| 341 | case '\\': dest.append("\\" "\\"); break; |
| 342 | default: |
| 343 | // Note that if we emit \xNN and the src character after that is a hex |
| 344 | // digit then that digit must be escaped too to prevent it being |
| 345 | // interpreted as part of the character code by C. |
| 346 | if ((!utf8_safe || c < 0x80) && |
| 347 | (!absl::ascii_isprint(c) || |
| 348 | (last_hex_escape && absl::ascii_isxdigit(c)))) { |
| 349 | if (use_hex) { |
| 350 | dest.append("\\" "x"); |
| 351 | dest.push_back(kHexChar[c / 16]); |
| 352 | dest.push_back(kHexChar[c % 16]); |
| 353 | is_hex_escape = true; |
| 354 | } else { |
| 355 | dest.append("\\"); |
| 356 | dest.push_back(kHexChar[c / 64]); |
| 357 | dest.push_back(kHexChar[(c % 64) / 8]); |
| 358 | dest.push_back(kHexChar[c % 8]); |
| 359 | } |
| 360 | } else { |
| 361 | dest.push_back(c); |
| 362 | break; |
| 363 | } |
| 364 | } |
| 365 | last_hex_escape = is_hex_escape; |
| 366 | } |
| 367 | |
| 368 | return dest; |
| 369 | } |
| 370 | |
| 371 | /* clang-format off */ |
| 372 | constexpr char c_escaped_len[256] = { |
| 373 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, // \t, \n, \r |
| 374 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 375 | 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // ", ' |
| 376 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // '0'..'9' |
| 377 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'A'..'O' |
| 378 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, // 'P'..'Z', '\' |
| 379 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'a'..'o' |
| 380 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, // 'p'..'z', DEL |
| 381 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 382 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 383 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 384 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 385 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 386 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 387 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 388 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 389 | }; |
| 390 | /* clang-format on */ |
| 391 | |
| 392 | // Calculates the length of the C-style escaped version of 'src'. |
| 393 | // Assumes that non-printable characters are escaped using octal sequences, and |
| 394 | // that UTF-8 bytes are not handled specially. |
| 395 | inline size_t CEscapedLength(absl::string_view src) { |
| 396 | size_t escaped_len = 0; |
| 397 | for (unsigned char c : src) escaped_len += c_escaped_len[c]; |
| 398 | return escaped_len; |
| 399 | } |
| 400 | |
| 401 | void CEscapeAndAppendInternal(absl::string_view src, std::string* dest) { |
| 402 | size_t escaped_len = CEscapedLength(src); |
| 403 | if (escaped_len == src.size()) { |
| 404 | dest->append(src.data(), src.size()); |
| 405 | return; |
| 406 | } |
| 407 | |
| 408 | size_t cur_dest_len = dest->size(); |
| 409 | strings_internal::STLStringResizeUninitialized(dest, |
| 410 | cur_dest_len + escaped_len); |
| 411 | char* append_ptr = &(*dest)[cur_dest_len]; |
| 412 | |
| 413 | for (unsigned char c : src) { |
| 414 | int char_len = c_escaped_len[c]; |
| 415 | if (char_len == 1) { |
| 416 | *append_ptr++ = c; |
| 417 | } else if (char_len == 2) { |
| 418 | switch (c) { |
| 419 | case '\n': |
| 420 | *append_ptr++ = '\\'; |
| 421 | *append_ptr++ = 'n'; |
| 422 | break; |
| 423 | case '\r': |
| 424 | *append_ptr++ = '\\'; |
| 425 | *append_ptr++ = 'r'; |
| 426 | break; |
| 427 | case '\t': |
| 428 | *append_ptr++ = '\\'; |
| 429 | *append_ptr++ = 't'; |
| 430 | break; |
| 431 | case '\"': |
| 432 | *append_ptr++ = '\\'; |
| 433 | *append_ptr++ = '\"'; |
| 434 | break; |
| 435 | case '\'': |
| 436 | *append_ptr++ = '\\'; |
| 437 | *append_ptr++ = '\''; |
| 438 | break; |
| 439 | case '\\': |
| 440 | *append_ptr++ = '\\'; |
| 441 | *append_ptr++ = '\\'; |
| 442 | break; |
| 443 | } |
| 444 | } else { |
| 445 | *append_ptr++ = '\\'; |
| 446 | *append_ptr++ = '0' + c / 64; |
| 447 | *append_ptr++ = '0' + (c % 64) / 8; |
| 448 | *append_ptr++ = '0' + c % 8; |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | bool Base64UnescapeInternal(const char* src_param, size_t szsrc, char* dest, |
| 454 | size_t szdest, const signed char* unbase64, |
| 455 | size_t* len) { |
| 456 | static const char kPad64Equals = '='; |
| 457 | static const char kPad64Dot = '.'; |
| 458 | |
| 459 | size_t destidx = 0; |
| 460 | int decode = 0; |
| 461 | int state = 0; |
| 462 | unsigned int ch = 0; |
| 463 | unsigned int temp = 0; |
| 464 | |
| 465 | // If "char" is signed by default, using *src as an array index results in |
| 466 | // accessing negative array elements. Treat the input as a pointer to |
| 467 | // unsigned char to avoid this. |
| 468 | const unsigned char* src = reinterpret_cast<const unsigned char*>(src_param); |
| 469 | |
| 470 | // The GET_INPUT macro gets the next input character, skipping |
| 471 | // over any whitespace, and stopping when we reach the end of the |
| 472 | // std::string or when we read any non-data character. The arguments are |
| 473 | // an arbitrary identifier (used as a label for goto) and the number |
| 474 | // of data bytes that must remain in the input to avoid aborting the |
| 475 | // loop. |
| 476 | #define GET_INPUT(label, remain) \ |
| 477 | label: \ |
| 478 | --szsrc; \ |
| 479 | ch = *src++; \ |
| 480 | decode = unbase64[ch]; \ |
| 481 | if (decode < 0) { \ |
| 482 | if (absl::ascii_isspace(ch) && szsrc >= remain) goto label; \ |
| 483 | state = 4 - remain; \ |
| 484 | break; \ |
| 485 | } |
| 486 | |
| 487 | // if dest is null, we're just checking to see if it's legal input |
| 488 | // rather than producing output. (I suspect this could just be done |
| 489 | // with a regexp...). We duplicate the loop so this test can be |
| 490 | // outside it instead of in every iteration. |
| 491 | |
| 492 | if (dest) { |
| 493 | // This loop consumes 4 input bytes and produces 3 output bytes |
| 494 | // per iteration. We can't know at the start that there is enough |
| 495 | // data left in the std::string for a full iteration, so the loop may |
| 496 | // break out in the middle; if so 'state' will be set to the |
| 497 | // number of input bytes read. |
| 498 | |
| 499 | while (szsrc >= 4) { |
| 500 | // We'll start by optimistically assuming that the next four |
| 501 | // bytes of the std::string (src[0..3]) are four good data bytes |
| 502 | // (that is, no nulls, whitespace, padding chars, or illegal |
| 503 | // chars). We need to test src[0..2] for nulls individually |
| 504 | // before constructing temp to preserve the property that we |
| 505 | // never read past a null in the std::string (no matter how long |
| 506 | // szsrc claims the std::string is). |
| 507 | |
| 508 | if (!src[0] || !src[1] || !src[2] || |
| 509 | ((temp = ((unsigned(unbase64[src[0]]) << 18) | |
| 510 | (unsigned(unbase64[src[1]]) << 12) | |
| 511 | (unsigned(unbase64[src[2]]) << 6) | |
| 512 | (unsigned(unbase64[src[3]])))) & |
| 513 | 0x80000000)) { |
| 514 | // Iff any of those four characters was bad (null, illegal, |
| 515 | // whitespace, padding), then temp's high bit will be set |
| 516 | // (because unbase64[] is -1 for all bad characters). |
| 517 | // |
| 518 | // We'll back up and resort to the slower decoder, which knows |
| 519 | // how to handle those cases. |
| 520 | |
| 521 | GET_INPUT(first, 4); |
| 522 | temp = decode; |
| 523 | GET_INPUT(second, 3); |
| 524 | temp = (temp << 6) | decode; |
| 525 | GET_INPUT(third, 2); |
| 526 | temp = (temp << 6) | decode; |
| 527 | GET_INPUT(fourth, 1); |
| 528 | temp = (temp << 6) | decode; |
| 529 | } else { |
| 530 | // We really did have four good data bytes, so advance four |
| 531 | // characters in the std::string. |
| 532 | |
| 533 | szsrc -= 4; |
| 534 | src += 4; |
| 535 | } |
| 536 | |
| 537 | // temp has 24 bits of input, so write that out as three bytes. |
| 538 | |
| 539 | if (destidx + 3 > szdest) return false; |
| 540 | dest[destidx + 2] = temp; |
| 541 | temp >>= 8; |
| 542 | dest[destidx + 1] = temp; |
| 543 | temp >>= 8; |
| 544 | dest[destidx] = temp; |
| 545 | destidx += 3; |
| 546 | } |
| 547 | } else { |
| 548 | while (szsrc >= 4) { |
| 549 | if (!src[0] || !src[1] || !src[2] || |
| 550 | ((temp = ((unsigned(unbase64[src[0]]) << 18) | |
| 551 | (unsigned(unbase64[src[1]]) << 12) | |
| 552 | (unsigned(unbase64[src[2]]) << 6) | |
| 553 | (unsigned(unbase64[src[3]])))) & |
| 554 | 0x80000000)) { |
| 555 | GET_INPUT(first_no_dest, 4); |
| 556 | GET_INPUT(second_no_dest, 3); |
| 557 | GET_INPUT(third_no_dest, 2); |
| 558 | GET_INPUT(fourth_no_dest, 1); |
| 559 | } else { |
| 560 | szsrc -= 4; |
| 561 | src += 4; |
| 562 | } |
| 563 | destidx += 3; |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | #undef GET_INPUT |
| 568 | |
| 569 | // if the loop terminated because we read a bad character, return |
| 570 | // now. |
| 571 | if (decode < 0 && ch != kPad64Equals && ch != kPad64Dot && |
| 572 | !absl::ascii_isspace(ch)) |
| 573 | return false; |
| 574 | |
| 575 | if (ch == kPad64Equals || ch == kPad64Dot) { |
| 576 | // if we stopped by hitting an '=' or '.', un-read that character -- we'll |
| 577 | // look at it again when we count to check for the proper number of |
| 578 | // equals signs at the end. |
| 579 | ++szsrc; |
| 580 | --src; |
| 581 | } else { |
| 582 | // This loop consumes 1 input byte per iteration. It's used to |
| 583 | // clean up the 0-3 input bytes remaining when the first, faster |
| 584 | // loop finishes. 'temp' contains the data from 'state' input |
| 585 | // characters read by the first loop. |
| 586 | while (szsrc > 0) { |
| 587 | --szsrc; |
| 588 | ch = *src++; |
| 589 | decode = unbase64[ch]; |
| 590 | if (decode < 0) { |
| 591 | if (absl::ascii_isspace(ch)) { |
| 592 | continue; |
| 593 | } else if (ch == kPad64Equals || ch == kPad64Dot) { |
| 594 | // back up one character; we'll read it again when we check |
| 595 | // for the correct number of pad characters at the end. |
| 596 | ++szsrc; |
| 597 | --src; |
| 598 | break; |
| 599 | } else { |
| 600 | return false; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | // Each input character gives us six bits of output. |
| 605 | temp = (temp << 6) | decode; |
| 606 | ++state; |
| 607 | if (state == 4) { |
| 608 | // If we've accumulated 24 bits of output, write that out as |
| 609 | // three bytes. |
| 610 | if (dest) { |
| 611 | if (destidx + 3 > szdest) return false; |
| 612 | dest[destidx + 2] = temp; |
| 613 | temp >>= 8; |
| 614 | dest[destidx + 1] = temp; |
| 615 | temp >>= 8; |
| 616 | dest[destidx] = temp; |
| 617 | } |
| 618 | destidx += 3; |
| 619 | state = 0; |
| 620 | temp = 0; |
| 621 | } |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | // Process the leftover data contained in 'temp' at the end of the input. |
| 626 | int expected_equals = 0; |
| 627 | switch (state) { |
| 628 | case 0: |
| 629 | // Nothing left over; output is a multiple of 3 bytes. |
| 630 | break; |
| 631 | |
| 632 | case 1: |
| 633 | // Bad input; we have 6 bits left over. |
| 634 | return false; |
| 635 | |
| 636 | case 2: |
| 637 | // Produce one more output byte from the 12 input bits we have left. |
| 638 | if (dest) { |
| 639 | if (destidx + 1 > szdest) return false; |
| 640 | temp >>= 4; |
| 641 | dest[destidx] = temp; |
| 642 | } |
| 643 | ++destidx; |
| 644 | expected_equals = 2; |
| 645 | break; |
| 646 | |
| 647 | case 3: |
| 648 | // Produce two more output bytes from the 18 input bits we have left. |
| 649 | if (dest) { |
| 650 | if (destidx + 2 > szdest) return false; |
| 651 | temp >>= 2; |
| 652 | dest[destidx + 1] = temp; |
| 653 | temp >>= 8; |
| 654 | dest[destidx] = temp; |
| 655 | } |
| 656 | destidx += 2; |
| 657 | expected_equals = 1; |
| 658 | break; |
| 659 | |
| 660 | default: |
| 661 | // state should have no other values at this point. |
| 662 | ABSL_RAW_LOG(FATAL, "This can't happen; base64 decoder state = %d", |
| 663 | state); |
| 664 | } |
| 665 | |
| 666 | // The remainder of the std::string should be all whitespace, mixed with |
| 667 | // exactly 0 equals signs, or exactly 'expected_equals' equals |
| 668 | // signs. (Always accepting 0 equals signs is an Abseil extension |
| 669 | // not covered in the RFC, as is accepting dot as the pad character.) |
| 670 | |
| 671 | int equals = 0; |
| 672 | while (szsrc > 0) { |
| 673 | if (*src == kPad64Equals || *src == kPad64Dot) |
| 674 | ++equals; |
| 675 | else if (!absl::ascii_isspace(*src)) |
| 676 | return false; |
| 677 | --szsrc; |
| 678 | ++src; |
| 679 | } |
| 680 | |
| 681 | const bool ok = (equals == 0 || equals == expected_equals); |
| 682 | if (ok) *len = destidx; |
| 683 | return ok; |
| 684 | } |
| 685 | |
| 686 | // The arrays below were generated by the following code |
| 687 | // #include <sys/time.h> |
| 688 | // #include <stdlib.h> |
| 689 | // #include <string.h> |
| 690 | // main() |
| 691 | // { |
| 692 | // static const char Base64[] = |
| 693 | // "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| 694 | // char* pos; |
| 695 | // int idx, i, j; |
| 696 | // printf(" "); |
| 697 | // for (i = 0; i < 255; i += 8) { |
| 698 | // for (j = i; j < i + 8; j++) { |
| 699 | // pos = strchr(Base64, j); |
| 700 | // if ((pos == nullptr) || (j == 0)) |
| 701 | // idx = -1; |
| 702 | // else |
| 703 | // idx = pos - Base64; |
| 704 | // if (idx == -1) |
| 705 | // printf(" %2d, ", idx); |
| 706 | // else |
| 707 | // printf(" %2d/*%c*/,", idx, j); |
| 708 | // } |
| 709 | // printf("\n "); |
| 710 | // } |
| 711 | // } |
| 712 | // |
| 713 | // where the value of "Base64[]" was replaced by one of the base-64 conversion |
| 714 | // tables from the functions below. |
| 715 | /* clang-format off */ |
| 716 | constexpr signed char kUnBase64[] = { |
| 717 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 718 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 719 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 720 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 721 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 722 | -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, |
| 723 | 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, |
| 724 | 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, |
| 725 | -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, |
| 726 | 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, |
| 727 | 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, |
| 728 | 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, |
| 729 | -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, |
| 730 | 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, |
| 731 | 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, |
| 732 | 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, |
| 733 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 734 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 735 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 736 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 737 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 738 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 739 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 740 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 741 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 742 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 743 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 744 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 745 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 746 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 747 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 748 | -1, -1, -1, -1, -1, -1, -1, -1 |
| 749 | }; |
| 750 | |
| 751 | constexpr signed char kUnWebSafeBase64[] = { |
| 752 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 753 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 754 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 755 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 756 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 757 | -1, -1, -1, -1, -1, 62/*-*/, -1, -1, |
| 758 | 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, |
| 759 | 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, |
| 760 | -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, |
| 761 | 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, |
| 762 | 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, |
| 763 | 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/, |
| 764 | -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, |
| 765 | 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, |
| 766 | 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, |
| 767 | 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, |
| 768 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 769 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 770 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 771 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 772 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 773 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 774 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 775 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 776 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 777 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 778 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 779 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 780 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 781 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 782 | -1, -1, -1, -1, -1, -1, -1, -1, |
| 783 | -1, -1, -1, -1, -1, -1, -1, -1 |
| 784 | }; |
| 785 | /* clang-format on */ |
| 786 | |
| 787 | size_t CalculateBase64EscapedLenInternal(size_t input_len, bool do_padding) { |
| 788 | // Base64 encodes three bytes of input at a time. If the input is not |
| 789 | // divisible by three, we pad as appropriate. |
| 790 | // |
| 791 | // (from https://tools.ietf.org/html/rfc3548) |
| 792 | // Special processing is performed if fewer than 24 bits are available |
| 793 | // at the end of the data being encoded. A full encoding quantum is |
| 794 | // always completed at the end of a quantity. When fewer than 24 input |
| 795 | // bits are available in an input group, zero bits are added (on the |
| 796 | // right) to form an integral number of 6-bit groups. Padding at the |
| 797 | // end of the data is performed using the '=' character. Since all base |
| 798 | // 64 input is an integral number of octets, only the following cases |
| 799 | // can arise: |
| 800 | |
| 801 | // Base64 encodes each three bytes of input into four bytes of output. |
| 802 | size_t len = (input_len / 3) * 4; |
| 803 | |
| 804 | if (input_len % 3 == 0) { |
| 805 | // (from https://tools.ietf.org/html/rfc3548) |
| 806 | // (1) the final quantum of encoding input is an integral multiple of 24 |
| 807 | // bits; here, the final unit of encoded output will be an integral |
| 808 | // multiple of 4 characters with no "=" padding, |
| 809 | } else if (input_len % 3 == 1) { |
| 810 | // (from https://tools.ietf.org/html/rfc3548) |
| 811 | // (2) the final quantum of encoding input is exactly 8 bits; here, the |
| 812 | // final unit of encoded output will be two characters followed by two |
| 813 | // "=" padding characters, or |
| 814 | len += 2; |
| 815 | if (do_padding) { |
| 816 | len += 2; |
| 817 | } |
| 818 | } else { // (input_len % 3 == 2) |
| 819 | // (from https://tools.ietf.org/html/rfc3548) |
| 820 | // (3) the final quantum of encoding input is exactly 16 bits; here, the |
| 821 | // final unit of encoded output will be three characters followed by one |
| 822 | // "=" padding character. |
| 823 | len += 3; |
| 824 | if (do_padding) { |
| 825 | len += 1; |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | assert(len >= input_len); // make sure we didn't overflow |
| 830 | return len; |
| 831 | } |
| 832 | |
| 833 | size_t Base64EscapeInternal(const unsigned char* src, size_t szsrc, char* dest, |
| 834 | size_t szdest, const char* base64, |
| 835 | bool do_padding) { |
| 836 | static const char kPad64 = '='; |
| 837 | |
| 838 | if (szsrc * 4 > szdest * 3) return 0; |
| 839 | |
| 840 | char* cur_dest = dest; |
| 841 | const unsigned char* cur_src = src; |
| 842 | |
| 843 | char* const limit_dest = dest + szdest; |
| 844 | const unsigned char* const limit_src = src + szsrc; |
| 845 | |
| 846 | // Three bytes of data encodes to four characters of cyphertext. |
| 847 | // So we can pump through three-byte chunks atomically. |
| 848 | if (szsrc >= 3) { // "limit_src - 3" is UB if szsrc < 3. |
| 849 | while (cur_src < limit_src - 3) { // While we have >= 32 bits. |
| 850 | uint32_t in = absl::big_endian::Load32(cur_src) >> 8; |
| 851 | |
| 852 | cur_dest[0] = base64[in >> 18]; |
| 853 | in &= 0x3FFFF; |
| 854 | cur_dest[1] = base64[in >> 12]; |
| 855 | in &= 0xFFF; |
| 856 | cur_dest[2] = base64[in >> 6]; |
| 857 | in &= 0x3F; |
| 858 | cur_dest[3] = base64[in]; |
| 859 | |
| 860 | cur_dest += 4; |
| 861 | cur_src += 3; |
| 862 | } |
| 863 | } |
| 864 | // To save time, we didn't update szdest or szsrc in the loop. So do it now. |
| 865 | szdest = limit_dest - cur_dest; |
| 866 | szsrc = limit_src - cur_src; |
| 867 | |
| 868 | /* now deal with the tail (<=3 bytes) */ |
| 869 | switch (szsrc) { |
| 870 | case 0: |
| 871 | // Nothing left; nothing more to do. |
| 872 | break; |
| 873 | case 1: { |
| 874 | // One byte left: this encodes to two characters, and (optionally) |
| 875 | // two pad characters to round out the four-character cypherblock. |
| 876 | if (szdest < 2) return 0; |
| 877 | uint32_t in = cur_src[0]; |
| 878 | cur_dest[0] = base64[in >> 2]; |
| 879 | in &= 0x3; |
| 880 | cur_dest[1] = base64[in << 4]; |
| 881 | cur_dest += 2; |
| 882 | szdest -= 2; |
| 883 | if (do_padding) { |
| 884 | if (szdest < 2) return 0; |
| 885 | cur_dest[0] = kPad64; |
| 886 | cur_dest[1] = kPad64; |
| 887 | cur_dest += 2; |
| 888 | szdest -= 2; |
| 889 | } |
| 890 | break; |
| 891 | } |
| 892 | case 2: { |
| 893 | // Two bytes left: this encodes to three characters, and (optionally) |
| 894 | // one pad character to round out the four-character cypherblock. |
| 895 | if (szdest < 3) return 0; |
| 896 | uint32_t in = absl::big_endian::Load16(cur_src); |
| 897 | cur_dest[0] = base64[in >> 10]; |
| 898 | in &= 0x3FF; |
| 899 | cur_dest[1] = base64[in >> 4]; |
| 900 | in &= 0x00F; |
| 901 | cur_dest[2] = base64[in << 2]; |
| 902 | cur_dest += 3; |
| 903 | szdest -= 3; |
| 904 | if (do_padding) { |
| 905 | if (szdest < 1) return 0; |
| 906 | cur_dest[0] = kPad64; |
| 907 | cur_dest += 1; |
| 908 | szdest -= 1; |
| 909 | } |
| 910 | break; |
| 911 | } |
| 912 | case 3: { |
| 913 | // Three bytes left: same as in the big loop above. We can't do this in |
| 914 | // the loop because the loop above always reads 4 bytes, and the fourth |
| 915 | // byte is past the end of the input. |
| 916 | if (szdest < 4) return 0; |
| 917 | uint32_t in = (cur_src[0] << 16) + absl::big_endian::Load16(cur_src + 1); |
| 918 | cur_dest[0] = base64[in >> 18]; |
| 919 | in &= 0x3FFFF; |
| 920 | cur_dest[1] = base64[in >> 12]; |
| 921 | in &= 0xFFF; |
| 922 | cur_dest[2] = base64[in >> 6]; |
| 923 | in &= 0x3F; |
| 924 | cur_dest[3] = base64[in]; |
| 925 | cur_dest += 4; |
| 926 | szdest -= 4; |
| 927 | break; |
| 928 | } |
| 929 | default: |
| 930 | // Should not be reached: blocks of 4 bytes are handled |
| 931 | // in the while loop before this switch statement. |
| 932 | ABSL_RAW_LOG(FATAL, "Logic problem? szsrc = %zu", szsrc); |
| 933 | break; |
| 934 | } |
| 935 | return (cur_dest - dest); |
| 936 | } |
| 937 | |
| 938 | constexpr char kBase64Chars[] = |
| 939 | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; |
| 940 | |
| 941 | constexpr char kWebSafeBase64Chars[] = |
| 942 | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; |
| 943 | |
| 944 | template <typename String> |
| 945 | void Base64EscapeInternal(const unsigned char* src, size_t szsrc, String* dest, |
| 946 | bool do_padding, const char* base64_chars) { |
| 947 | const size_t calc_escaped_size = |
| 948 | CalculateBase64EscapedLenInternal(szsrc, do_padding); |
| 949 | strings_internal::STLStringResizeUninitialized(dest, calc_escaped_size); |
| 950 | |
| 951 | const size_t escaped_len = Base64EscapeInternal( |
| 952 | src, szsrc, &(*dest)[0], dest->size(), base64_chars, do_padding); |
| 953 | assert(calc_escaped_size == escaped_len); |
| 954 | dest->erase(escaped_len); |
| 955 | } |
| 956 | |
| 957 | template <typename String> |
| 958 | bool Base64UnescapeInternal(const char* src, size_t slen, String* dest, |
| 959 | const signed char* unbase64) { |
| 960 | // Determine the size of the output std::string. Base64 encodes every 3 bytes into |
| 961 | // 4 characters. any leftover chars are added directly for good measure. |
| 962 | // This is documented in the base64 RFC: http://tools.ietf.org/html/rfc3548 |
| 963 | const size_t dest_len = 3 * (slen / 4) + (slen % 4); |
| 964 | |
| 965 | strings_internal::STLStringResizeUninitialized(dest, dest_len); |
| 966 | |
| 967 | // We are getting the destination buffer by getting the beginning of the |
| 968 | // std::string and converting it into a char *. |
| 969 | size_t len; |
| 970 | const bool ok = |
| 971 | Base64UnescapeInternal(src, slen, &(*dest)[0], dest_len, unbase64, &len); |
| 972 | if (!ok) { |
| 973 | dest->clear(); |
| 974 | return false; |
| 975 | } |
| 976 | |
| 977 | // could be shorter if there was padding |
| 978 | assert(len <= dest_len); |
| 979 | dest->erase(len); |
| 980 | |
| 981 | return true; |
| 982 | } |
| 983 | |
| 984 | /* clang-format off */ |
| 985 | constexpr char kHexValue[256] = { |
| 986 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 987 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 988 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 989 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, // '0'..'9' |
| 990 | 0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'A'..'F' |
| 991 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 992 | 0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'a'..'f' |
| 993 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 994 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 995 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 996 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 997 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 998 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 999 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1000 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 1001 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| 1002 | }; |
| 1003 | /* clang-format on */ |
| 1004 | |
| 1005 | // This is a templated function so that T can be either a char* |
| 1006 | // or a string. This works because we use the [] operator to access |
| 1007 | // individual characters at a time. |
| 1008 | template <typename T> |
| 1009 | void HexStringToBytesInternal(const char* from, T to, ptrdiff_t num) { |
| 1010 | for (int i = 0; i < num; i++) { |
| 1011 | to[i] = (kHexValue[from[i * 2] & 0xFF] << 4) + |
| 1012 | (kHexValue[from[i * 2 + 1] & 0xFF]); |
| 1013 | } |
| 1014 | } |
| 1015 | |
| 1016 | // This is a templated function so that T can be either a char* or a |
| 1017 | // std::string. |
| 1018 | template <typename T> |
| 1019 | void BytesToHexStringInternal(const unsigned char* src, T dest, ptrdiff_t num) { |
| 1020 | auto dest_ptr = &dest[0]; |
| 1021 | for (auto src_ptr = src; src_ptr != (src + num); ++src_ptr, dest_ptr += 2) { |
| 1022 | const char* hex_p = &kHexTable[*src_ptr * 2]; |
| 1023 | std::copy(hex_p, hex_p + 2, dest_ptr); |
| 1024 | } |
| 1025 | } |
| 1026 | |
| 1027 | } // namespace |
| 1028 | |
| 1029 | // ---------------------------------------------------------------------- |
| 1030 | // CUnescape() |
| 1031 | // |
| 1032 | // See CUnescapeInternal() for implementation details. |
| 1033 | // ---------------------------------------------------------------------- |
| 1034 | bool CUnescape(absl::string_view source, std::string* dest, |
| 1035 | std::string* error) { |
| 1036 | return CUnescapeInternal(source, kUnescapeNulls, dest, error); |
| 1037 | } |
| 1038 | |
| 1039 | std::string CEscape(absl::string_view src) { |
| 1040 | std::string dest; |
| 1041 | CEscapeAndAppendInternal(src, &dest); |
| 1042 | return dest; |
| 1043 | } |
| 1044 | |
| 1045 | std::string CHexEscape(absl::string_view src) { |
| 1046 | return CEscapeInternal(src, true, false); |
| 1047 | } |
| 1048 | |
| 1049 | std::string Utf8SafeCEscape(absl::string_view src) { |
| 1050 | return CEscapeInternal(src, false, true); |
| 1051 | } |
| 1052 | |
| 1053 | std::string Utf8SafeCHexEscape(absl::string_view src) { |
| 1054 | return CEscapeInternal(src, true, true); |
| 1055 | } |
| 1056 | |
| 1057 | // ---------------------------------------------------------------------- |
| 1058 | // Base64Unescape() - base64 decoder |
| 1059 | // Base64Escape() - base64 encoder |
| 1060 | // WebSafeBase64Unescape() - Google's variation of base64 decoder |
| 1061 | // WebSafeBase64Escape() - Google's variation of base64 encoder |
| 1062 | // |
| 1063 | // Check out |
| 1064 | // http://tools.ietf.org/html/rfc2045 for formal description, but what we |
| 1065 | // care about is that... |
| 1066 | // Take the encoded stuff in groups of 4 characters and turn each |
| 1067 | // character into a code 0 to 63 thus: |
| 1068 | // A-Z map to 0 to 25 |
| 1069 | // a-z map to 26 to 51 |
| 1070 | // 0-9 map to 52 to 61 |
| 1071 | // +(- for WebSafe) maps to 62 |
| 1072 | // /(_ for WebSafe) maps to 63 |
| 1073 | // There will be four numbers, all less than 64 which can be represented |
| 1074 | // by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively). |
| 1075 | // Arrange the 6 digit binary numbers into three bytes as such: |
| 1076 | // aaaaaabb bbbbcccc ccdddddd |
| 1077 | // Equals signs (one or two) are used at the end of the encoded block to |
| 1078 | // indicate that the text was not an integer multiple of three bytes long. |
| 1079 | // ---------------------------------------------------------------------- |
| 1080 | |
| 1081 | bool Base64Unescape(absl::string_view src, std::string* dest) { |
| 1082 | return Base64UnescapeInternal(src.data(), src.size(), dest, kUnBase64); |
| 1083 | } |
| 1084 | |
| 1085 | bool WebSafeBase64Unescape(absl::string_view src, std::string* dest) { |
| 1086 | return Base64UnescapeInternal(src.data(), src.size(), dest, kUnWebSafeBase64); |
| 1087 | } |
| 1088 | |
| 1089 | void Base64Escape(absl::string_view src, std::string* dest) { |
| 1090 | Base64EscapeInternal(reinterpret_cast<const unsigned char*>(src.data()), |
| 1091 | src.size(), dest, true, kBase64Chars); |
| 1092 | } |
| 1093 | |
| 1094 | void WebSafeBase64Escape(absl::string_view src, std::string* dest) { |
| 1095 | Base64EscapeInternal(reinterpret_cast<const unsigned char*>(src.data()), |
| 1096 | src.size(), dest, false, kWebSafeBase64Chars); |
| 1097 | } |
| 1098 | |
| 1099 | std::string Base64Escape(absl::string_view src) { |
| 1100 | std::string dest; |
| 1101 | Base64EscapeInternal(reinterpret_cast<const unsigned char*>(src.data()), |
| 1102 | src.size(), &dest, true, kBase64Chars); |
| 1103 | return dest; |
| 1104 | } |
| 1105 | |
| 1106 | std::string WebSafeBase64Escape(absl::string_view src) { |
| 1107 | std::string dest; |
| 1108 | Base64EscapeInternal(reinterpret_cast<const unsigned char*>(src.data()), |
| 1109 | src.size(), &dest, false, kWebSafeBase64Chars); |
| 1110 | return dest; |
| 1111 | } |
| 1112 | |
| 1113 | std::string HexStringToBytes(absl::string_view from) { |
| 1114 | std::string result; |
| 1115 | const auto num = from.size() / 2; |
| 1116 | strings_internal::STLStringResizeUninitialized(&result, num); |
| 1117 | absl::HexStringToBytesInternal<std::string&>(from.data(), result, num); |
| 1118 | return result; |
| 1119 | } |
| 1120 | |
| 1121 | std::string BytesToHexString(absl::string_view from) { |
| 1122 | std::string result; |
| 1123 | strings_internal::STLStringResizeUninitialized(&result, 2 * from.size()); |
| 1124 | absl::BytesToHexStringInternal<std::string&>( |
| 1125 | reinterpret_cast<const unsigned char*>(from.data()), result, from.size()); |
| 1126 | return result; |
| 1127 | } |
| 1128 | |
| 1129 | } // namespace absl |