Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/base/internal/endian.h" |
| 16 | |
| 17 | #include <algorithm> |
| 18 | #include <cstdint> |
| 19 | #include <limits> |
| 20 | #include <random> |
| 21 | #include <vector> |
| 22 | |
| 23 | #include "gtest/gtest.h" |
| 24 | #include "absl/base/config.h" |
| 25 | |
| 26 | namespace absl { |
| 27 | namespace { |
| 28 | |
| 29 | const uint64_t kInitialNumber{0x0123456789abcdef}; |
| 30 | const uint64_t k64Value{kInitialNumber}; |
| 31 | const uint32_t k32Value{0x01234567}; |
| 32 | const uint16_t k16Value{0x0123}; |
| 33 | const int kNumValuesToTest = 1000000; |
| 34 | const int kRandomSeed = 12345; |
| 35 | |
| 36 | #if defined(ABSL_IS_BIG_ENDIAN) |
| 37 | const uint64_t kInitialInNetworkOrder{kInitialNumber}; |
| 38 | const uint64_t k64ValueLE{0xefcdab8967452301}; |
| 39 | const uint32_t k32ValueLE{0x67452301}; |
| 40 | const uint16_t k16ValueLE{0x2301}; |
| 41 | |
| 42 | const uint64_t k64ValueBE{kInitialNumber}; |
| 43 | const uint32_t k32ValueBE{k32Value}; |
| 44 | const uint16_t k16ValueBE{k16Value}; |
| 45 | #elif defined(ABSL_IS_LITTLE_ENDIAN) |
| 46 | const uint64_t kInitialInNetworkOrder{0xefcdab8967452301}; |
| 47 | const uint64_t k64ValueLE{kInitialNumber}; |
| 48 | const uint32_t k32ValueLE{k32Value}; |
| 49 | const uint16_t k16ValueLE{k16Value}; |
| 50 | |
| 51 | const uint64_t k64ValueBE{0xefcdab8967452301}; |
| 52 | const uint32_t k32ValueBE{0x67452301}; |
| 53 | const uint16_t k16ValueBE{0x2301}; |
| 54 | #endif |
| 55 | |
| 56 | template<typename T> |
| 57 | std::vector<T> GenerateAllValuesForType() { |
| 58 | std::vector<T> result; |
| 59 | T next = std::numeric_limits<T>::min(); |
| 60 | while (true) { |
| 61 | result.push_back(next); |
| 62 | if (next == std::numeric_limits<T>::max()) { |
| 63 | return result; |
| 64 | } |
| 65 | ++next; |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | template<typename T> |
| 70 | std::vector<T> GenerateRandomIntegers(size_t numValuesToTest) { |
| 71 | std::vector<T> result; |
| 72 | std::mt19937_64 rng(kRandomSeed); |
| 73 | for (size_t i = 0; i < numValuesToTest; ++i) { |
| 74 | result.push_back(rng()); |
| 75 | } |
| 76 | return result; |
| 77 | } |
| 78 | |
| 79 | void ManualByteSwap(char* bytes, int length) { |
| 80 | if (length == 1) |
| 81 | return; |
| 82 | |
| 83 | EXPECT_EQ(0, length % 2); |
| 84 | for (int i = 0; i < length / 2; ++i) { |
| 85 | int j = (length - 1) - i; |
| 86 | using std::swap; |
| 87 | swap(bytes[i], bytes[j]); |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | template<typename T> |
| 92 | inline T UnalignedLoad(const char* p) { |
| 93 | static_assert( |
| 94 | sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8, |
| 95 | "Unexpected type size"); |
| 96 | |
| 97 | switch (sizeof(T)) { |
| 98 | case 1: return *reinterpret_cast<const T*>(p); |
| 99 | case 2: |
| 100 | return ABSL_INTERNAL_UNALIGNED_LOAD16(p); |
| 101 | case 4: |
| 102 | return ABSL_INTERNAL_UNALIGNED_LOAD32(p); |
| 103 | case 8: |
| 104 | return ABSL_INTERNAL_UNALIGNED_LOAD64(p); |
| 105 | default: |
| 106 | // Suppresses invalid "not all control paths return a value" on MSVC |
| 107 | return {}; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | template <typename T, typename ByteSwapper> |
| 112 | static void GBSwapHelper(const std::vector<T>& host_values_to_test, |
| 113 | const ByteSwapper& byte_swapper) { |
| 114 | // Test byte_swapper against a manual byte swap. |
| 115 | for (typename std::vector<T>::const_iterator it = host_values_to_test.begin(); |
| 116 | it != host_values_to_test.end(); ++it) { |
| 117 | T host_value = *it; |
| 118 | |
| 119 | char actual_value[sizeof(host_value)]; |
| 120 | memcpy(actual_value, &host_value, sizeof(host_value)); |
| 121 | byte_swapper(actual_value); |
| 122 | |
| 123 | char expected_value[sizeof(host_value)]; |
| 124 | memcpy(expected_value, &host_value, sizeof(host_value)); |
| 125 | ManualByteSwap(expected_value, sizeof(host_value)); |
| 126 | |
| 127 | ASSERT_EQ(0, memcmp(actual_value, expected_value, sizeof(host_value))) |
| 128 | << "Swap output for 0x" << std::hex << host_value << " does not match. " |
| 129 | << "Expected: 0x" << UnalignedLoad<T>(expected_value) << "; " |
| 130 | << "actual: 0x" << UnalignedLoad<T>(actual_value); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | void Swap16(char* bytes) { |
| 135 | ABSL_INTERNAL_UNALIGNED_STORE16( |
| 136 | bytes, gbswap_16(ABSL_INTERNAL_UNALIGNED_LOAD16(bytes))); |
| 137 | } |
| 138 | |
| 139 | void Swap32(char* bytes) { |
| 140 | ABSL_INTERNAL_UNALIGNED_STORE32( |
| 141 | bytes, gbswap_32(ABSL_INTERNAL_UNALIGNED_LOAD32(bytes))); |
| 142 | } |
| 143 | |
| 144 | void Swap64(char* bytes) { |
| 145 | ABSL_INTERNAL_UNALIGNED_STORE64( |
| 146 | bytes, gbswap_64(ABSL_INTERNAL_UNALIGNED_LOAD64(bytes))); |
| 147 | } |
| 148 | |
| 149 | TEST(EndianessTest, Uint16) { |
| 150 | GBSwapHelper(GenerateAllValuesForType<uint16_t>(), &Swap16); |
| 151 | } |
| 152 | |
| 153 | TEST(EndianessTest, Uint32) { |
| 154 | GBSwapHelper(GenerateRandomIntegers<uint32_t>(kNumValuesToTest), &Swap32); |
| 155 | } |
| 156 | |
| 157 | TEST(EndianessTest, Uint64) { |
| 158 | GBSwapHelper(GenerateRandomIntegers<uint64_t>(kNumValuesToTest), &Swap64); |
| 159 | } |
| 160 | |
| 161 | TEST(EndianessTest, ghtonll_gntohll) { |
| 162 | // Test that absl::ghtonl compiles correctly |
| 163 | uint32_t test = 0x01234567; |
| 164 | EXPECT_EQ(absl::gntohl(absl::ghtonl(test)), test); |
| 165 | |
| 166 | uint64_t comp = absl::ghtonll(kInitialNumber); |
| 167 | EXPECT_EQ(comp, kInitialInNetworkOrder); |
| 168 | comp = absl::gntohll(kInitialInNetworkOrder); |
| 169 | EXPECT_EQ(comp, kInitialNumber); |
| 170 | |
| 171 | // Test that htonll and ntohll are each others' inverse functions on a |
| 172 | // somewhat assorted batch of numbers. 37 is chosen to not be anything |
| 173 | // particularly nice base 2. |
| 174 | uint64_t value = 1; |
| 175 | for (int i = 0; i < 100; ++i) { |
| 176 | comp = absl::ghtonll(absl::gntohll(value)); |
| 177 | EXPECT_EQ(value, comp); |
| 178 | comp = absl::gntohll(absl::ghtonll(value)); |
| 179 | EXPECT_EQ(value, comp); |
| 180 | value *= 37; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | TEST(EndianessTest, little_endian) { |
| 185 | // Check little_endian uint16_t. |
| 186 | uint64_t comp = little_endian::FromHost16(k16Value); |
| 187 | EXPECT_EQ(comp, k16ValueLE); |
| 188 | comp = little_endian::ToHost16(k16ValueLE); |
| 189 | EXPECT_EQ(comp, k16Value); |
| 190 | |
| 191 | // Check little_endian uint32_t. |
| 192 | comp = little_endian::FromHost32(k32Value); |
| 193 | EXPECT_EQ(comp, k32ValueLE); |
| 194 | comp = little_endian::ToHost32(k32ValueLE); |
| 195 | EXPECT_EQ(comp, k32Value); |
| 196 | |
| 197 | // Check little_endian uint64_t. |
| 198 | comp = little_endian::FromHost64(k64Value); |
| 199 | EXPECT_EQ(comp, k64ValueLE); |
| 200 | comp = little_endian::ToHost64(k64ValueLE); |
| 201 | EXPECT_EQ(comp, k64Value); |
| 202 | |
| 203 | // Check little-endian Load and store functions. |
| 204 | uint16_t u16Buf; |
| 205 | uint32_t u32Buf; |
| 206 | uint64_t u64Buf; |
| 207 | |
| 208 | little_endian::Store16(&u16Buf, k16Value); |
| 209 | EXPECT_EQ(u16Buf, k16ValueLE); |
| 210 | comp = little_endian::Load16(&u16Buf); |
| 211 | EXPECT_EQ(comp, k16Value); |
| 212 | |
| 213 | little_endian::Store32(&u32Buf, k32Value); |
| 214 | EXPECT_EQ(u32Buf, k32ValueLE); |
| 215 | comp = little_endian::Load32(&u32Buf); |
| 216 | EXPECT_EQ(comp, k32Value); |
| 217 | |
| 218 | little_endian::Store64(&u64Buf, k64Value); |
| 219 | EXPECT_EQ(u64Buf, k64ValueLE); |
| 220 | comp = little_endian::Load64(&u64Buf); |
| 221 | EXPECT_EQ(comp, k64Value); |
| 222 | } |
| 223 | |
| 224 | TEST(EndianessTest, big_endian) { |
| 225 | // Check big-endian Load and store functions. |
| 226 | uint16_t u16Buf; |
| 227 | uint32_t u32Buf; |
| 228 | uint64_t u64Buf; |
| 229 | |
| 230 | unsigned char buffer[10]; |
| 231 | big_endian::Store16(&u16Buf, k16Value); |
| 232 | EXPECT_EQ(u16Buf, k16ValueBE); |
| 233 | uint64_t comp = big_endian::Load16(&u16Buf); |
| 234 | EXPECT_EQ(comp, k16Value); |
| 235 | |
| 236 | big_endian::Store32(&u32Buf, k32Value); |
| 237 | EXPECT_EQ(u32Buf, k32ValueBE); |
| 238 | comp = big_endian::Load32(&u32Buf); |
| 239 | EXPECT_EQ(comp, k32Value); |
| 240 | |
| 241 | big_endian::Store64(&u64Buf, k64Value); |
| 242 | EXPECT_EQ(u64Buf, k64ValueBE); |
| 243 | comp = big_endian::Load64(&u64Buf); |
| 244 | EXPECT_EQ(comp, k64Value); |
| 245 | |
| 246 | big_endian::Store16(buffer + 1, k16Value); |
| 247 | EXPECT_EQ(u16Buf, k16ValueBE); |
| 248 | comp = big_endian::Load16(buffer + 1); |
| 249 | EXPECT_EQ(comp, k16Value); |
| 250 | |
| 251 | big_endian::Store32(buffer + 1, k32Value); |
| 252 | EXPECT_EQ(u32Buf, k32ValueBE); |
| 253 | comp = big_endian::Load32(buffer + 1); |
| 254 | EXPECT_EQ(comp, k32Value); |
| 255 | |
| 256 | big_endian::Store64(buffer + 1, k64Value); |
| 257 | EXPECT_EQ(u64Buf, k64ValueBE); |
| 258 | comp = big_endian::Load64(buffer + 1); |
| 259 | EXPECT_EQ(comp, k64Value); |
| 260 | } |
| 261 | |
| 262 | } // namespace |
| 263 | } // namespace absl |