Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 1 | #!/usr/bin/python |
| 2 | |
| 3 | import control_loop |
| 4 | import controls |
| 5 | import numpy |
| 6 | import sys |
| 7 | from matplotlib import pylab |
| 8 | |
| 9 | |
| 10 | class CIM(control_loop.ControlLoop): |
| 11 | def __init__(self): |
| 12 | super(CIM, self).__init__("CIM") |
| 13 | # Stall Torque in N m |
| 14 | self.stall_torque = 2.42 |
| 15 | # Stall Current in Amps |
| 16 | self.stall_current = 133 |
| 17 | # Free Speed in RPM |
| 18 | self.free_speed = 4650.0 |
| 19 | # Free Current in Amps |
| 20 | self.free_current = 2.7 |
| 21 | # Moment of inertia of the CIM in kg m^2 |
| 22 | self.J = 0.0001 |
| 23 | # Resistance of the motor, divided by 2 to account for the 2 motors |
| 24 | self.R = 12.0 / self.stall_current |
| 25 | # Motor velocity constant |
| 26 | self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| 27 | (12.0 - self.R * self.free_current)) |
| 28 | # Torque constant |
| 29 | self.Kt = self.stall_torque / self.stall_current |
| 30 | # Control loop time step |
| 31 | self.dt = 0.005 |
| 32 | |
| 33 | # State feedback matrices |
| 34 | self.A_continuous = numpy.matrix( |
| 35 | [[-self.Kt / self.Kv / (self.J * self.R)]]) |
| 36 | self.B_continuous = numpy.matrix( |
| 37 | [[self.Kt / (self.J * self.R)]]) |
| 38 | self.C = numpy.matrix([[1]]) |
| 39 | self.D = numpy.matrix([[0]]) |
| 40 | |
| 41 | self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| 42 | self.B_continuous, self.dt) |
| 43 | |
| 44 | self.PlaceControllerPoles([0.01]) |
| 45 | self.PlaceObserverPoles([0.01]) |
| 46 | |
| 47 | self.U_max = numpy.matrix([[12.0]]) |
| 48 | self.U_min = numpy.matrix([[-12.0]]) |
| 49 | |
| 50 | self.InitializeState() |
| 51 | |
| 52 | |
| 53 | class Drivetrain(control_loop.ControlLoop): |
| 54 | def __init__(self, name="Drivetrain", left_low=True, right_low=True): |
| 55 | super(Drivetrain, self).__init__(name) |
| 56 | # Stall Torque in N m |
| 57 | self.stall_torque = 2.42 |
| 58 | # Stall Current in Amps |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 59 | self.stall_current = 133.0 |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 60 | # Free Speed in RPM. Used number from last year. |
| 61 | self.free_speed = 4650.0 |
| 62 | # Free Current in Amps |
| 63 | self.free_current = 2.7 |
| 64 | # Moment of inertia of the drivetrain in kg m^2 |
| 65 | # Just borrowed from last year. |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 66 | self.J = 10 |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 67 | # Mass of the robot, in kg. |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 68 | self.m = 68 |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 69 | # Radius of the robot, in meters (from last year). |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 70 | self.rb = 0.9603 / 2.0 |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 71 | # Radius of the wheels, in meters. |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 72 | self.r = 0.0508 |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 73 | # Resistance of the motor, divided by the number of motors. |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 74 | self.R = 12.0 / self.stall_current / 2 |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 75 | # Motor velocity constant |
| 76 | self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| 77 | (12.0 - self.R * self.free_current)) |
| 78 | # Torque constant |
| 79 | self.Kt = self.stall_torque / self.stall_current |
| 80 | # Gear ratios |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 81 | self.G_const = 18.0 / 44.0 * 18.0 / 60.0 |
| 82 | |
| 83 | self.G_low = self.G_const |
| 84 | self.G_high = self.G_const |
| 85 | |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 86 | if left_low: |
| 87 | self.Gl = self.G_low |
| 88 | else: |
| 89 | self.Gl = self.G_high |
| 90 | if right_low: |
| 91 | self.Gr = self.G_low |
| 92 | else: |
| 93 | self.Gr = self.G_high |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 94 | |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 95 | # Control loop time step |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 96 | self.dt = 0.005 |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 97 | |
| 98 | # These describe the way that a given side of a robot will be influenced |
| 99 | # by the other side. Units of 1 / kg. |
| 100 | self.msp = 1.0 / self.m + self.rb * self.rb / self.J |
| 101 | self.msn = 1.0 / self.m - self.rb * self.rb / self.J |
| 102 | # The calculations which we will need for A and B. |
| 103 | self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.R * self.r * self.r) |
| 104 | self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.R * self.r * self.r) |
| 105 | self.mpl = self.Kt / (self.Gl * self.R * self.r) |
| 106 | self.mpr = self.Kt / (self.Gr * self.R * self.r) |
| 107 | |
| 108 | # State feedback matrices |
| 109 | # X will be of the format |
| 110 | # [[positionl], [velocityl], [positionr], velocityr]] |
| 111 | self.A_continuous = numpy.matrix( |
| 112 | [[0, 1, 0, 0], |
| 113 | [0, self.msp * self.tcl, 0, self.msn * self.tcr], |
| 114 | [0, 0, 0, 1], |
| 115 | [0, self.msn * self.tcl, 0, self.msp * self.tcr]]) |
| 116 | self.B_continuous = numpy.matrix( |
| 117 | [[0, 0], |
| 118 | [self.msp * self.mpl, self.msn * self.mpr], |
| 119 | [0, 0], |
| 120 | [self.msn * self.mpl, self.msp * self.mpr]]) |
| 121 | self.C = numpy.matrix([[1, 0, 0, 0], |
| 122 | [0, 0, 1, 0]]) |
| 123 | self.D = numpy.matrix([[0, 0], |
| 124 | [0, 0]]) |
| 125 | |
| 126 | #print "THE NUMBER I WANT" + str(numpy.linalg.inv(self.A_continuous) * -self.B_continuous * numpy.matrix([[12.0], [12.0]])) |
| 127 | self.A, self.B = self.ContinuousToDiscrete( |
| 128 | self.A_continuous, self.B_continuous, self.dt) |
| 129 | |
| 130 | # Poles from last year. |
| 131 | self.hp = 0.65 |
| 132 | self.lp = 0.83 |
| 133 | self.PlaceControllerPoles([self.hp, self.lp, self.hp, self.lp]) |
| 134 | print self.K |
| 135 | q_pos = 0.07 |
| 136 | q_vel = 1.0 |
| 137 | self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0], |
| 138 | [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0], |
| 139 | [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0], |
| 140 | [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]]) |
| 141 | |
| 142 | self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0], |
| 143 | [0.0, (1.0 / (12.0 ** 2.0))]]) |
| 144 | self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| 145 | print self.A |
| 146 | print self.B |
| 147 | print self.K |
| 148 | print numpy.linalg.eig(self.A - self.B * self.K)[0] |
| 149 | |
| 150 | self.hlp = 0.3 |
| 151 | self.llp = 0.4 |
| 152 | self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp]) |
| 153 | |
| 154 | self.U_max = numpy.matrix([[12.0], [12.0]]) |
| 155 | self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| 156 | self.InitializeState() |
| 157 | |
| 158 | def main(argv): |
| 159 | # Simulate the response of the system to a step input. |
| 160 | drivetrain = Drivetrain() |
| 161 | simulated_left = [] |
| 162 | simulated_right = [] |
| 163 | for _ in xrange(100): |
| 164 | drivetrain.Update(numpy.matrix([[12.0], [12.0]])) |
| 165 | simulated_left.append(drivetrain.X[0, 0]) |
| 166 | simulated_right.append(drivetrain.X[2, 0]) |
| 167 | |
| 168 | #pylab.plot(range(100), simulated_left) |
| 169 | #pylab.plot(range(100), simulated_right) |
| 170 | #pylab.show() |
| 171 | |
| 172 | # Simulate forwards motion. |
| 173 | drivetrain = Drivetrain() |
| 174 | close_loop_left = [] |
| 175 | close_loop_right = [] |
| 176 | R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]]) |
| 177 | for _ in xrange(100): |
| 178 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 179 | drivetrain.U_min, drivetrain.U_max) |
| 180 | drivetrain.UpdateObserver(U) |
| 181 | drivetrain.Update(U) |
| 182 | close_loop_left.append(drivetrain.X[0, 0]) |
| 183 | close_loop_right.append(drivetrain.X[2, 0]) |
| 184 | |
| 185 | #pylab.plot(range(100), close_loop_left) |
| 186 | #pylab.plot(range(100), close_loop_right) |
| 187 | #pylab.show() |
| 188 | |
| 189 | # Try turning in place |
| 190 | drivetrain = Drivetrain() |
| 191 | close_loop_left = [] |
| 192 | close_loop_right = [] |
| 193 | R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]]) |
| 194 | for _ in xrange(100): |
| 195 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 196 | drivetrain.U_min, drivetrain.U_max) |
| 197 | drivetrain.UpdateObserver(U) |
| 198 | drivetrain.Update(U) |
| 199 | close_loop_left.append(drivetrain.X[0, 0]) |
| 200 | close_loop_right.append(drivetrain.X[2, 0]) |
| 201 | |
| 202 | #pylab.plot(range(100), close_loop_left) |
| 203 | #pylab.plot(range(100), close_loop_right) |
| 204 | #pylab.show() |
| 205 | |
| 206 | # Try turning just one side. |
| 207 | drivetrain = Drivetrain() |
| 208 | close_loop_left = [] |
| 209 | close_loop_right = [] |
| 210 | R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]]) |
| 211 | for _ in xrange(100): |
| 212 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 213 | drivetrain.U_min, drivetrain.U_max) |
| 214 | drivetrain.UpdateObserver(U) |
| 215 | drivetrain.Update(U) |
| 216 | close_loop_left.append(drivetrain.X[0, 0]) |
| 217 | close_loop_right.append(drivetrain.X[2, 0]) |
| 218 | |
| 219 | #pylab.plot(range(100), close_loop_left) |
| 220 | #pylab.plot(range(100), close_loop_right) |
| 221 | #pylab.show() |
| 222 | |
| 223 | # Write the generated constants out to a file. |
| 224 | print "Output one" |
| 225 | drivetrain_low_low = Drivetrain(name="DrivetrainLowLow", left_low=True, right_low=True) |
| 226 | drivetrain_low_high = Drivetrain(name="DrivetrainLowHigh", left_low=True, right_low=False) |
| 227 | drivetrain_high_low = Drivetrain(name="DrivetrainHighLow", left_low=False, right_low=True) |
| 228 | drivetrain_high_high = Drivetrain(name="DrivetrainHighHigh", left_low=False, right_low=False) |
| 229 | |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 230 | if len(argv) != 5: |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 231 | print "Expected .h file name and .cc file name" |
| 232 | else: |
| 233 | dog_loop_writer = control_loop.ControlLoopWriter( |
| 234 | "Drivetrain", [drivetrain_low_low, drivetrain_low_high, |
| 235 | drivetrain_high_low, drivetrain_high_high], |
Comran Morshed | 41ed7c2 | 2015-11-04 21:03:37 +0000 | [diff] [blame] | 236 | namespaces=['y2014_bot3', 'control_loops']) |
Comran Morshed | e9b1292 | 2015-11-04 19:46:48 +0000 | [diff] [blame] | 237 | if argv[1][-3:] == '.cc': |
| 238 | dog_loop_writer.Write(argv[2], argv[1]) |
| 239 | else: |
| 240 | dog_loop_writer.Write(argv[1], argv[2]) |
| 241 | |
| 242 | if __name__ == '__main__': |
| 243 | sys.exit(main(sys.argv)) |