blob: 6daa4ebac96c666c558257ffaad073290cb80cac [file] [log] [blame]
Brian Silverman9809c5f2022-07-23 16:12:23 -07001#![warn(unsafe_op_in_unsafe_fn)]
2
3//! This module provides a Rust async runtime on top of the C++ `aos::EventLoop` interface.
4//!
5//! # Rust async with `aos::EventLoop`
6//!
7//! The async runtimes we create are not general-purpose. They may only await the objects provided
8//! by this module. Awaiting anything else will hang, until it is woken which will panic. Also,
9//! doing any long-running task (besides await) will block the C++ EventLoop thread, which is
10//! usually bad.
11//!
12//! ## Multiple tasks
13//!
14//! This runtime only supports a single task (aka a single [`Future`]) at a time. For many use
15//! cases, this is sufficient. If you want more than that, one of these may be appropriate:
16//!
17//! 1. If you have a small number of tasks determined at compile time, [`futures::join`] can await
18//! them all simultaneously.
19//! 2. [`futures::stream::FuturesUnordered`] can wait on a variable number of futures. It also
20//! supports adding them at runtime. Consider something like
21//! `FuturesUnordered<Pin<Box<dyn Future<Output = ()>>>` if you want a generic "container of any
22//! future".
23//! 3. Multiple applications are better suited to multiple `EventLoopRuntime`s, on separate
24//! `aos::EventLoop`s. Otherwise they can't send messages to each other, among other
25//! restrictions. https://github.com/frc971/971-Robot-Code/issues/12 covers creating an adapter
26//! that provides multiple `EventLoop`s on top of a single underlying implementation.
27//!
28//! ## Design
29//!
30//! The design of this is tricky. This is a complicated API interface between C++ and Rust. The big
31//! considerations in arriving at this design include:
32//! * `EventLoop` implementations alias the objects they're returning from C++, which means
33//! creating Rust unique references to them is unsound. See
34//! https://github.com/google/autocxx/issues/1146 for details.
35//! * For various reasons autocxx can't directly wrap APIs using types ergonomic for C++. This and
36//! the previous point mean we wrap all of the C++ objects specifically for this class.
37//! * Keeping track of all the lifetimes and creating appropriate references for the callbacks is
38//! really hard in Rust. Even doing it for the library implementation turned out to be hard
39//! enough to look for alternatives. I think you'd have to make extensive use of pointers, but
40//! Rust makes that hard, and it's easy to create references in ways that violate Rust's
41//! aliasing rules.
42//! * We can't use [`futures::stream::Stream`] and all of its nice [`futures::stream::StreamExt`]
43//! helpers for watchers because we need lifetime-generic `Item` types. Effectively we're making
44//! a lending stream. This is very close to lending iterators, which is one of the motivating
45//! examples for generic associated types (https://github.com/rust-lang/rust/issues/44265).
46
47use std::{fmt, future::Future, marker::PhantomData, pin::Pin, slice, task::Poll, time::Duration};
48
49use autocxx::{
50 subclass::{is_subclass, CppSubclass},
51 WithinBox,
52};
53use cxx::UniquePtr;
54use futures::{future::FusedFuture, never::Never};
55use thiserror::Error;
56use uuid::Uuid;
57
58pub use aos_configuration::{Channel, ChannelLookupError, Configuration, ConfigurationExt, Node};
59pub use aos_uuid::UUID;
60
61autocxx::include_cpp! (
62#include "aos/events/event_loop_runtime.h"
63
64safety!(unsafe)
65
66generate_pod!("aos::Context")
67generate!("aos::WatcherForRust")
68generate!("aos::RawSender_Error")
69generate!("aos::SenderForRust")
70generate!("aos::FetcherForRust")
71generate!("aos::EventLoopRuntime")
72
73subclass!("aos::ApplicationFuture", RustApplicationFuture)
74
75extern_cpp_type!("aos::Configuration", crate::Configuration)
76extern_cpp_type!("aos::Channel", crate::Channel)
77extern_cpp_type!("aos::Node", crate::Node)
78extern_cpp_type!("aos::UUID", crate::UUID)
79);
80
81pub type EventLoop = ffi::aos::EventLoop;
82
83/// # Safety
84///
85/// This should have a `'event_loop` lifetime and `future` should include that in its type, but
86/// autocxx's subclass doesn't support that. Even if it did, it wouldn't be enforced. C++ is
87/// enforcing the lifetime: it destroys this object along with the C++ `EventLoopRuntime`, which
88/// must be outlived by the EventLoop.
89#[doc(hidden)]
90#[is_subclass(superclass("aos::ApplicationFuture"))]
91pub struct RustApplicationFuture {
92 /// This logically has a `'event_loop` bound, see the class comment for details.
93 future: Pin<Box<dyn Future<Output = Never>>>,
94}
95
96impl ffi::aos::ApplicationFuture_methods for RustApplicationFuture {
97 fn Poll(&mut self) {
98 // This is always allowed because it can never create a value of type `Ready<Never>` to
99 // return, so it must always return `Pending`. That also means the value it returns doesn't
100 // mean anything, so we ignore it.
101 let _ =
102 Pin::new(&mut self.future).poll(&mut std::task::Context::from_waker(&panic_waker()));
103 }
104}
105
106impl RustApplicationFuture {
107 pub fn new<'event_loop>(
108 future: impl Future<Output = Never> + 'event_loop,
109 ) -> UniquePtr<ffi::aos::ApplicationFuture> {
110 /// # Safety
111 ///
112 /// This completely removes the `'event_loop` lifetime, the caller must ensure that is
113 /// sound.
114 unsafe fn remove_lifetime<'event_loop>(
115 future: Pin<Box<dyn Future<Output = Never> + 'event_loop>>,
116 ) -> Pin<Box<dyn Future<Output = Never>>> {
117 // SAFETY: Caller is responsible.
118 unsafe { std::mem::transmute(future) }
119 }
120
121 Self::as_ApplicationFuture_unique_ptr(Self::new_cpp_owned(Self {
122 // SAFETY: C++ manages observing the lifetime, see [`RustApplicationFuture`] for
123 // details.
124 future: unsafe { remove_lifetime(Box::pin(future)) },
125 cpp_peer: Default::default(),
126 }))
127 }
128}
129
130pub struct EventLoopRuntime<'event_loop>(
131 Pin<Box<ffi::aos::EventLoopRuntime>>,
132 // This is the lifetime of the underlying EventLoop, which is held in C++ via `.0`.
133 PhantomData<&'event_loop mut ()>,
134);
135
136/// Manages the Rust interface to a *single* `aos::EventLoop`. This is intended to be used by a
137/// single application.
138impl<'event_loop> EventLoopRuntime<'event_loop> {
139 /// Creates a new runtime. This must be the only user of the underlying `aos::EventLoop`, or
140 /// things may panic unexpectedly.
141 ///
142 /// Call [`spawn`] to respond to events. The non-event-driven APIs may be used without calling
143 /// this.
144 ///
145 /// This is an async runtime, but it's a somewhat unusual one. See the module-level
146 /// documentation for details.
147 ///
148 /// # Safety
149 ///
150 /// `event_loop` must be valid for `'event_loop`. Effectively we want the argument to be
151 /// `&'event_loop mut EventLoop`, but we can't do that (see the module-level documentation for
152 /// details).
153 ///
154 /// This is a tricky thing to guarantee, be very cautious calling this function. It's an unbound
155 /// lifetime so you should probably wrap it in a function that directly attaches a known
156 /// lifetime. One common pattern is calling this in the constructor of an object whose lifetime
157 /// is managed by C++; C++ doesn't inherit the Rust lifetime but we do have a lot of C++ code
158 /// that obeys the rule of destroying the object before the EventLoop, which is equivalent to
159 /// this restriction.
160 ///
161 /// In Rust terms, this is equivalent to storing `event_loop` in the returned object, which
162 /// will dereference it throughout its lifetime, and the caller must guarantee this is sound.
163 pub unsafe fn new(event_loop: *mut ffi::aos::EventLoop) -> Self {
164 Self(
165 // SAFETY: We push all the validity requirements for this up to our caller.
166 unsafe { ffi::aos::EventLoopRuntime::new(event_loop) }.within_box(),
167 PhantomData,
168 )
169 }
170
171 /// Returns the pointer passed into the constructor.
172 ///
173 /// The returned value should only be used for destroying it (_after_ `self` is dropped) or
174 /// calling other C++ APIs.
175 pub fn raw_event_loop(&mut self) -> *mut ffi::aos::EventLoop {
176 self.0.as_mut().event_loop()
177 }
178
179 // TODO(Brian): Expose `name`. Need to sort out the lifetimes. C++ can reallocate the pointer
180 // independent of Rust. Use it in `get_raw_channel` instead of passing the name in.
181
182 pub fn get_raw_channel(
183 &self,
184 name: &str,
185 typename: &str,
186 application_name: &str,
187 ) -> Result<&'event_loop Channel, ChannelLookupError> {
188 self.configuration()
189 .get_channel(name, typename, application_name, self.node())
190 }
191
192 // TODO(Brian): `get_channel<T>`.
193
194 /// Starts running the given `task`, which may not return (as specified by its type). If you
195 /// want your task to stop, return the result of awaiting [`futures::future::pending`], which
196 /// will never complete. `task` will not be polled after the underlying `aos::EventLoop` exits.
197 ///
198 /// TODO(Brian): Make this paragraph true:
199 /// Note that task will be polled immediately. If you want to defer work until the event loop
200 /// starts running, await TODO in the task.
201 ///
202 /// # Panics
203 ///
204 /// Panics if called more than once. See the module-level documentation for alternatives if you
205 /// want to do this.
206 ///
207 /// # Examples with interesting return types
208 ///
209 /// These are all valid futures which never return:
210 /// ```
211 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
212 /// # use futures::{never::Never, future::pending};
213 /// async fn pending_wrapper() -> Never {
214 /// pending().await
215 /// }
216 /// async fn loop_forever() -> Never {
217 /// loop {}
218 /// }
219 ///
220 /// runtime.spawn(pending());
221 /// runtime.spawn(async { pending().await });
222 /// runtime.spawn(pending_wrapper());
223 /// runtime.spawn(async { loop {} });
224 /// runtime.spawn(loop_forever());
225 /// runtime.spawn(async { println!("all done"); pending().await });
226 /// # }
227 /// ```
228 /// but this is not:
229 /// ```compile_fail
230 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
231 /// # use futures::ready;
232 /// runtime.spawn(ready());
233 /// # }
234 /// ```
235 /// and neither is this:
236 /// ```compile_fail
237 /// # fn compile_check(mut runtime: aos_events_event_loop_runtime::EventLoopRuntime) {
238 /// # use futures::ready;
239 /// runtime.spawn(async { println!("all done") });
240 /// # }
241 /// ```
242 ///
243 /// # Examples with capturing
244 ///
245 /// The future can capture things. This is important to access other objects created from the
246 /// runtime, either before calling this function:
247 /// ```
248 /// # fn compile_check<'event_loop>(
249 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
250 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
251 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
252 /// # ) {
253 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
254 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
255 /// runtime.spawn(async move { loop {
256 /// watcher1.next().await;
257 /// watcher2.next().await;
258 /// }});
259 /// # }
260 /// ```
261 /// or after:
262 /// ```
263 /// # fn compile_check<'event_loop>(
264 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
265 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
266 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
267 /// # ) {
268 /// # use std::{cell::RefCell, rc::Rc};
269 /// let runtime = Rc::new(RefCell::new(runtime));
270 /// runtime.borrow_mut().spawn({
271 /// let mut runtime = runtime.clone();
272 /// async move {
273 /// let mut runtime = runtime.borrow_mut();
274 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
275 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
276 /// loop {
277 /// watcher1.next().await;
278 /// watcher2.next().await;
279 /// }
280 /// }
281 /// });
282 /// # }
283 /// ```
284 /// or both:
285 /// ```
286 /// # fn compile_check<'event_loop>(
287 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
288 /// # channel1: &'event_loop aos_events_event_loop_runtime::Channel,
289 /// # channel2: &'event_loop aos_events_event_loop_runtime::Channel,
290 /// # ) {
291 /// # use std::{cell::RefCell, rc::Rc};
292 /// let mut watcher1 = runtime.make_raw_watcher(channel1);
293 /// let runtime = Rc::new(RefCell::new(runtime));
294 /// runtime.borrow_mut().spawn({
295 /// let mut runtime = runtime.clone();
296 /// async move {
297 /// let mut runtime = runtime.borrow_mut();
298 /// let mut watcher2 = runtime.make_raw_watcher(channel2);
299 /// loop {
300 /// watcher1.next().await;
301 /// watcher2.next().await;
302 /// }
303 /// }
304 /// });
305 /// # }
306 /// ```
307 ///
308 /// But you cannot capture local variables:
309 /// ```compile_fail
310 /// # fn compile_check<'event_loop>(
311 /// # mut runtime: aos_events_event_loop_runtime::EventLoopRuntime<'event_loop>,
312 /// # ) {
313 /// let mut local: i32 = 971;
314 /// let local = &mut local;
315 /// runtime.spawn(async move { loop {
316 /// println!("have: {}", local);
317 /// }});
318 /// # }
319 /// ```
320 pub fn spawn(&mut self, task: impl Future<Output = Never> + 'event_loop) {
321 self.0.as_mut().spawn(RustApplicationFuture::new(task));
322 }
323
324 pub fn configuration(&self) -> &'event_loop Configuration {
325 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop.
326 unsafe { &*self.0.configuration() }
327 }
328
329 pub fn node(&self) -> Option<&'event_loop Node> {
330 // SAFETY: It's always a pointer valid for longer than the underlying EventLoop, or null.
331 unsafe { self.0.node().as_ref() }
332 }
333
334 pub fn monotonic_now(&self) -> MonotonicInstant {
335 MonotonicInstant(self.0.monotonic_now())
336 }
337
338 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
339 /// part of `self.configuration()`, which will always have this lifetime.
340 ///
341 /// # Panics
342 ///
343 /// Dropping `self` before the returned object is dropped will panic.
344 pub fn make_raw_watcher(&mut self, channel: &'event_loop Channel) -> RawWatcher {
345 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
346 // the usual autocxx heuristics.
347 RawWatcher(unsafe { self.0.as_mut().MakeWatcher(channel) }.within_box())
348 }
349
350 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
351 /// part of `self.configuration()`, which will always have this lifetime.
352 ///
353 /// # Panics
354 ///
355 /// Dropping `self` before the returned object is dropped will panic.
356 pub fn make_raw_sender(&mut self, channel: &'event_loop Channel) -> RawSender {
357 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
358 // the usual autocxx heuristics.
359 RawSender(unsafe { self.0.as_mut().MakeSender(channel) }.within_box())
360 }
361
362 /// Note that the `'event_loop` input lifetime is intentional. The C++ API requires that it is
363 /// part of `self.configuration()`, which will always have this lifetime.
364 ///
365 /// # Panics
366 ///
367 /// Dropping `self` before the returned object is dropped will panic.
368 pub fn make_raw_fetcher(&mut self, channel: &'event_loop Channel) -> RawFetcher {
369 // SAFETY: `channel` is valid for the necessary lifetime, all other requirements fall under
370 // the usual autocxx heuristics.
371 RawFetcher(unsafe { self.0.as_mut().MakeFetcher(channel) }.within_box())
372 }
373
374 // TODO(Brian): Expose timers and phased loops. Should we have `sleep`-style methods for those,
375 // instead of / in addition to mirroring C++ with separate setup and wait?
376
377 // TODO(Brian): Expose OnRun. That should only be called once, so coalesce and have it return
378 // immediately afterwards.
379}
380
381// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
382#[repr(transparent)]
383pub struct RawWatcher(Pin<Box<ffi::aos::WatcherForRust>>);
384
385/// Provides async blocking access to messages on a channel. This will return every message on the
386/// channel, in order.
387///
388/// Use [`EventLoopRuntime::make_raw_watcher`] to create one of these.
389///
390/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
391/// for actually interpreting messages. You probably want a [`Watcher`] instead.
392///
393/// This is the same concept as [`futures::stream::Stream`], but can't follow that API for technical
394/// reasons.
395///
396/// # Design
397///
398/// We can't use [`futures::stream::Stream`] because our `Item` type is `Context<'_>`, which means
399/// it's different for each `self` lifetime so we can't write a single type alias for it. We could
400/// write an intermediate type with a generic lifetime that implements `Stream` and is returned
401/// from a `make_stream` method, but that's what `Stream` is doing in the first place so adding
402/// another level doesn't help anything.
403///
404/// We also drop the extraneous `cx` argument that isn't used by this implementation anyways.
405///
406/// We also run into some limitations in the borrow checker trying to implement `poll`, I think it's
407/// the same one mentioned here:
408/// https://blog.rust-lang.org/2022/08/05/nll-by-default.html#looking-forward-what-can-we-expect-for-the-borrow-checker-of-the-future
409/// We get around that one by moving the unbounded lifetime from the pointer dereference into the
410/// function with the if statement.
411impl RawWatcher {
412 /// Returns a Future to await the next value. This can be canceled (ie dropped) at will,
413 /// without skipping any messages.
414 ///
415 /// Remember not to call `poll` after it returns `Poll::Ready`, just like any other future. You
416 /// will need to call this function again to get the succeeding message.
417 ///
418 /// # Examples
419 ///
420 /// The common use case is immediately awaiting the next message:
421 /// ```
422 /// # async fn await_message(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
423 /// println!("received: {:?}", watcher.next().await);
424 /// # }
425 /// ```
426 ///
427 /// You can also await the first message from any of a set of channels:
428 /// ```
429 /// # async fn select(
430 /// # mut watcher1: aos_events_event_loop_runtime::RawWatcher,
431 /// # mut watcher2: aos_events_event_loop_runtime::RawWatcher,
432 /// # ) {
433 /// futures::select! {
434 /// message1 = watcher1.next() => println!("channel 1: {:?}", message1),
435 /// message2 = watcher2.next() => println!("channel 2: {:?}", message2),
436 /// }
437 /// # }
438 /// ```
439 ///
440 /// Note that due to the returned object borrowing the `self` reference, the borrow checker will
441 /// enforce only having a single of these returned objects at a time. Drop the previous message
442 /// before asking for the next one. That means this will not compile:
443 /// ```compile_fail
444 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
445 /// let first = watcher.next();
446 /// let second = watcher.next();
447 /// first.await;
448 /// # }
449 /// ```
450 /// and nor will this:
451 /// ```compile_fail
452 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
453 /// let first = watcher.next().await;
454 /// watcher.next();
455 /// println!("still have: {:?}", first);
456 /// # }
457 /// ```
458 /// but this is fine:
459 /// ```
460 /// # async fn compile_check(mut watcher: aos_events_event_loop_runtime::RawWatcher) {
461 /// let first = watcher.next().await;
462 /// println!("have: {:?}", first);
463 /// watcher.next();
464 /// # }
465 /// ```
466 pub fn next(&mut self) -> RawWatcherNext {
467 RawWatcherNext(Some(self))
468 }
469}
470
471/// The type returned from [`RawWatcher::next`], see there for details.
472pub struct RawWatcherNext<'a>(Option<&'a mut RawWatcher>);
473
474impl<'a> Future for RawWatcherNext<'a> {
475 type Output = Context<'a>;
476 fn poll(mut self: Pin<&mut Self>, _: &mut std::task::Context) -> Poll<Context<'a>> {
477 let inner = self
478 .0
479 .take()
480 .expect("May not call poll after it returns Ready");
481 let maybe_context = inner.0.as_mut().PollNext();
482 if maybe_context.is_null() {
483 // We're not returning a reference into it, so we can safely replace the reference to
484 // use again in the future.
485 self.0.replace(inner);
486 Poll::Pending
487 } else {
488 // SAFETY: We just checked if it's null. If not, it will be a valid pointer. It will
489 // remain a valid pointer for the borrow of the underlying `RawWatcher` (ie `'a`)
490 // because we're dropping `inner` (which is that reference), so it will need to be
491 // borrowed again which cannot happen before the end of `'a`.
492 Poll::Ready(Context(unsafe { &*maybe_context }))
493 }
494 }
495}
496
497impl FusedFuture for RawWatcherNext<'_> {
498 fn is_terminated(&self) -> bool {
499 self.0.is_none()
500 }
501}
502
503// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
504#[repr(transparent)]
505pub struct RawFetcher(Pin<Box<ffi::aos::FetcherForRust>>);
506
507/// Provides access to messages on a channel, without the ability to wait for a new one. This
508/// provides APIs to get the latest message at some time, and to follow along and retrieve each
509/// message in order.
510///
511/// Use [`EventLoopRuntime::make_raw_fetcher`] to create one of these.
512///
513/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
514/// for actually interpreting messages. You probably want a [`Fetcher`] instead.
515impl RawFetcher {
516 pub fn fetch_next(&mut self) -> bool {
517 self.0.as_mut().FetchNext()
518 }
519
520 pub fn fetch(&mut self) -> bool {
521 self.0.as_mut().Fetch()
522 }
523
524 pub fn context(&self) -> Context {
525 Context(self.0.context())
526 }
527}
528
529// SAFETY: If this outlives the parent EventLoop, the C++ code will LOG(FATAL).
530#[repr(transparent)]
531pub struct RawSender(Pin<Box<ffi::aos::SenderForRust>>);
532
533/// Allows sending messages on a channel.
534///
535/// This is the non-typed API, which is mainly useful for reflection and does not provide safe APIs
536/// for actually creating messages to send. You probably want a [`Sender`] instead.
537///
538/// Use [`EventLoopRuntime::make_raw_sender`] to create one of these.
539impl RawSender {
540 fn buffer(&mut self) -> &mut [u8] {
541 // SAFETY: This is a valid slice, and `u8` doesn't have any alignment requirements.
542 unsafe { slice::from_raw_parts_mut(self.0.as_mut().data(), self.0.as_mut().size()) }
543 }
544
545 /// Returns an object which can be used to build a message.
546 ///
547 /// # Examples
548 ///
549 /// ```
550 /// # use pong_rust_fbs::aos::examples::PongBuilder;
551 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
552 /// # unsafe {
553 /// let mut builder = sender.make_builder();
554 /// let pong = PongBuilder::new(builder.fbb()).finish();
555 /// builder.send(pong);
556 /// # }
557 /// # }
558 /// ```
559 ///
560 /// You can bail out of building a message and build another one:
561 /// ```
562 /// # use pong_rust_fbs::aos::examples::PongBuilder;
563 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
564 /// # unsafe {
565 /// let mut builder1 = sender.make_builder();
566 /// builder1.fbb();
567 /// let mut builder2 = sender.make_builder();
568 /// let pong = PongBuilder::new(builder2.fbb()).finish();
569 /// builder2.send(pong);
570 /// # }
571 /// # }
572 /// ```
573 /// but you cannot build two messages at the same time with a single builder:
574 /// ```compile_fail
575 /// # use pong_rust_fbs::aos::examples::PongBuilder;
576 /// # fn compile_check(mut sender: aos_events_event_loop_runtime::RawSender) {
577 /// # unsafe {
578 /// let mut builder1 = sender.make_builder();
579 /// let mut builder2 = sender.make_builder();
580 /// PongBuilder::new(builder2.fbb()).finish();
581 /// PongBuilder::new(builder1.fbb()).finish();
582 /// # }
583 /// # }
584 /// ```
585 pub fn make_builder(&mut self) -> RawBuilder {
586 // TODO(Brian): Actually use the provided buffer instead of just using its
587 // size to allocate a separate one.
588 //
589 // See https://github.com/google/flatbuffers/issues/7385.
590 let fbb = flatbuffers::FlatBufferBuilder::with_capacity(self.buffer().len());
591 RawBuilder {
592 raw_sender: self,
593 fbb,
594 }
595 }
596}
597
598#[derive(Clone, Copy, Eq, PartialEq, Debug, Error)]
599pub enum SendError {
600 #[error("messages have been sent too fast on this channel")]
601 MessagesSentTooFast,
602 #[error("invalid redzone data, shared memory corruption detected")]
603 InvalidRedzone,
604}
605
606/// Used for building a message. See [`RawSender::make_builder`] for details.
607pub struct RawBuilder<'sender> {
608 raw_sender: &'sender mut RawSender,
609 fbb: flatbuffers::FlatBufferBuilder<'sender>,
610}
611
612impl<'sender> RawBuilder<'sender> {
613 pub fn fbb(&mut self) -> &mut flatbuffers::FlatBufferBuilder<'sender> {
614 &mut self.fbb
615 }
616
617 /// # Safety
618 ///
619 /// `T` must match the type of the channel of the sender this builder was created from.
620 pub unsafe fn send<T>(mut self, root: flatbuffers::WIPOffset<T>) -> Result<(), SendError> {
621 self.fbb.finish_minimal(root);
622 let data = self.fbb.finished_data();
623
624 use ffi::aos::RawSender_Error as FfiError;
625 // SAFETY: This is a valid buffer we're passing.
626 match unsafe {
627 self.raw_sender
628 .0
629 .as_mut()
630 .CopyAndSend(data.as_ptr(), data.len())
631 } {
632 FfiError::kOk => Ok(()),
633 FfiError::kMessagesSentTooFast => Err(SendError::MessagesSentTooFast),
634 FfiError::kInvalidRedzone => Err(SendError::InvalidRedzone),
635 }
636 }
637}
638
639#[repr(transparent)]
640#[derive(Clone, Copy)]
641pub struct Context<'context>(&'context ffi::aos::Context);
642
643impl fmt::Debug for Context<'_> {
644 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
645 // TODO(Brian): Add the realtime timestamps here.
646 f.debug_struct("Context")
647 .field("monotonic_event_time", &self.monotonic_event_time())
648 .field("monotonic_remote_time", &self.monotonic_remote_time())
649 .field("queue_index", &self.queue_index())
650 .field("remote_queue_index", &self.remote_queue_index())
651 .field("size", &self.data().map(|data| data.len()))
652 .field("buffer_index", &self.buffer_index())
653 .field("source_boot_uuid", &self.source_boot_uuid())
654 .finish()
655 }
656}
657
658// TODO(Brian): Add the realtime timestamps here.
659impl<'context> Context<'context> {
660 pub fn monotonic_event_time(self) -> MonotonicInstant {
661 MonotonicInstant(self.0.monotonic_event_time)
662 }
663
664 pub fn monotonic_remote_time(self) -> MonotonicInstant {
665 MonotonicInstant(self.0.monotonic_remote_time)
666 }
667
668 pub fn queue_index(self) -> u32 {
669 self.0.queue_index
670 }
671 pub fn remote_queue_index(self) -> u32 {
672 self.0.remote_queue_index
673 }
674
675 pub fn data(self) -> Option<&'context [u8]> {
676 if self.0.data.is_null() {
677 None
678 } else {
679 // SAFETY:
680 // * `u8` has no alignment requirements
681 // * It must be a single initialized flatbuffers buffer
682 // * The borrow in `self.0` guarantees it won't be modified for `'context`
683 Some(unsafe { slice::from_raw_parts(self.0.data as *const u8, self.0.size) })
684 }
685 }
686
687 pub fn buffer_index(self) -> i32 {
688 self.0.buffer_index
689 }
690
691 pub fn source_boot_uuid(self) -> &'context Uuid {
692 // SAFETY: `self` has a valid C++ object. C++ guarantees that the return value will be
693 // valid until something changes the context, which is `'context`.
694 Uuid::from_bytes_ref(&self.0.source_boot_uuid)
695 }
696}
697
698/// Represents a `aos::monotonic_clock::time_point` in a natural Rust way. This
699/// is intended to have the same API as [`std::time::Instant`], any missing
700/// functionality can be added if useful.
701///
702/// TODO(Brian): Do RealtimeInstant too. Use a macro? Integer as a generic
703/// parameter to distinguish them? Or just copy/paste?
704#[repr(transparent)]
705#[derive(Clone, Copy, Eq, PartialEq)]
706pub struct MonotonicInstant(i64);
707
708impl MonotonicInstant {
709 /// `aos::monotonic_clock::min_time`, commonly used as a sentinel value.
710 pub const MIN_TIME: Self = Self(i64::MIN);
711
712 pub fn is_min_time(self) -> bool {
713 self == Self::MIN_TIME
714 }
715
716 pub fn duration_since_epoch(self) -> Option<Duration> {
717 if self.is_min_time() {
718 None
719 } else {
720 Some(Duration::from_nanos(self.0.try_into().expect(
721 "monotonic_clock::time_point should always be after the epoch",
722 )))
723 }
724 }
725}
726
727impl fmt::Debug for MonotonicInstant {
728 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
729 self.duration_since_epoch().fmt(f)
730 }
731}
732
733mod panic_waker {
734 use std::task::{RawWaker, RawWakerVTable, Waker};
735
736 unsafe fn clone_panic_waker(_data: *const ()) -> RawWaker {
737 raw_panic_waker()
738 }
739
740 unsafe fn noop(_data: *const ()) {}
741
742 unsafe fn wake_panic(_data: *const ()) {
743 panic!("Nothing should wake EventLoopRuntime's waker");
744 }
745
746 const PANIC_WAKER_VTABLE: RawWakerVTable =
747 RawWakerVTable::new(clone_panic_waker, wake_panic, wake_panic, noop);
748
749 fn raw_panic_waker() -> RawWaker {
750 RawWaker::new(std::ptr::null(), &PANIC_WAKER_VTABLE)
751 }
752
753 pub fn panic_waker() -> Waker {
754 // SAFETY: The implementations of the RawWakerVTable functions do what is required of them.
755 unsafe { Waker::from_raw(raw_panic_waker()) }
756 }
757}
758
759use panic_waker::panic_waker;