blob: 75a649683ed9edf9a1dfb205f7f7b83cc33e989e [file] [log] [blame]
milind-udb98afa2022-03-01 19:54:57 -08001#include "aos/util/math.h"
2#include "glog/logging.h"
3#include "opencv2/core/types.hpp"
4
5namespace y2022::vision {
6
7// Linear equation in the form y = mx + b
8struct SlopeInterceptLine {
9 double m, b;
10
11 inline SlopeInterceptLine(cv::Point2d p, cv::Point2d q) {
12 if (p.x == q.x) {
13 CHECK_EQ(p.y, q.y) << "Can't fit line to infinite slope";
14
15 // If two identical points were passed in, give the slope 0,
16 // with it passing the point.
17 m = 0.0;
18 } else {
19 m = (p.y - q.y) / (p.x - q.x);
20 }
21 // y = mx + b -> b = y - mx
22 b = p.y - (m * p.x);
23 }
24
25 inline double operator()(double x) const { return (m * x) + b; }
26};
27
28// Linear equation in the form ax + by = c
29struct StdFormLine {
30 public:
31 double a, b, c;
32
33 inline std::optional<cv::Point2d> Intersection(const StdFormLine &l) const {
34 // Use Cramer's rule to solve for the intersection
35 const double denominator = Determinant(a, b, l.a, l.b);
36 const double numerator_x = Determinant(c, b, l.c, l.b);
37 const double numerator_y = Determinant(a, c, l.a, l.c);
38
39 std::optional<cv::Point2d> intersection = std::nullopt;
40 // Return nullopt if the denominator is 0, meaning the same slopes
41 if (denominator != 0) {
42 intersection =
43 cv::Point2d(numerator_x / denominator, numerator_y / denominator);
44 }
45
46 return intersection;
47 }
48
49 private: // Determinant of [[a, b], [c, d]]
50 static inline double Determinant(double a, double b, double c, double d) {
51 return (a * d) - (b * c);
52 }
53};
54
55struct Circle {
56 public:
57 cv::Point2d center;
58 double radius;
59
60 static inline std::optional<Circle> Fit(std::vector<cv::Point2d> points) {
61 CHECK_EQ(points.size(), 3ul);
62 // For the 3 points, we have 3 equations in the form
63 // (x - h)^2 + (y - k)^2 = r^2
64 // Manipulate them to solve for the center and radius
65 // (x1 - h)^2 + (y1 - k)^2 = r^2 ->
66 // x1^2 + h^2 - 2x1h + y1^2 + k^2 - 2y1k = r^2
67 // Also, (x2 - h)^2 + (y2 - k)^2 = r^2
68 // Subtracting these two, we get
69 // x1^2 - x2^2 - 2h(x1 - x2) + y1^2 - y2^2 - 2k(y1 - y2) = 0 ->
70 // h(x1 - x2) + k(y1 - y2) = (-x1^2 + x2^2 - y1^2 + y2^2) / -2
71 // Doing the same with equations 1 and 3, we get the second linear equation
72 // h(x1 - x3) + k(y1 - y3) = (-x1^2 + x3^2 - y1^2 + y3^2) / -2
73 // Now, we can solve for their intersection and find the center
74 const auto l =
75 StdFormLine{points[0].x - points[1].x, points[0].y - points[1].y,
76 (-std::pow(points[0].x, 2) + std::pow(points[1].x, 2) -
77 std::pow(points[0].y, 2) + std::pow(points[1].y, 2)) /
78 -2.0};
79 const auto m =
80 StdFormLine{points[0].x - points[2].x, points[0].y - points[2].y,
81 (-std::pow(points[0].x, 2) + std::pow(points[2].x, 2) -
82 std::pow(points[0].y, 2) + std::pow(points[2].y, 2)) /
83 -2.0};
84 const auto center = l.Intersection(m);
85
86 std::optional<Circle> circle = std::nullopt;
87 if (center) {
88 // Now find the radius
89 const double radius = cv::norm(points[0] - *center);
90 circle = Circle{*center, radius};
91 }
92 return circle;
93 }
94
95 inline double DistanceTo(cv::Point2d p) const {
96 const auto p_prime = TranslateToOrigin(p);
97 // Now, the distance is simply the difference between distance from the
98 // origin to p' and the radius.
99 return std::abs(cv::norm(p_prime) - radius);
100 }
101
102 inline double AngleOf(cv::Point2d p) const {
103 auto p_prime = TranslateToOrigin(p);
104 // Flip the y because y values go downwards.
105 p_prime.y *= -1;
106 return std::atan2(p_prime.y, p_prime.x);
107 }
108
109 inline bool InAngleRange(cv::Point2d p, double theta_min,
110 double theta_max) const {
111 const double theta = AngleOf(p);
112
113 // Handle the case if the bounds wrap around 2pi
114 const double max_diff = aos::math::NormalizeAngle(theta_max - theta);
115 const double min_diff = aos::math::NormalizeAngle(theta - theta_min);
116
117 return ((theta == theta_max) || (theta == theta_min) ||
118 (std::signbit(min_diff) == std::signbit(max_diff)));
119 }
120
121 private:
122 // Translate the point on the circle
123 // as if the circle's center is the origin (0,0)
124 inline cv::Point2d TranslateToOrigin(cv::Point2d p) const {
125 return cv::Point2d(p.x - center.x, p.y - center.y);
126 }
127};
128
129} // namespace y2022::vision