Austin Schuh | 0cbef62 | 2015-09-06 17:34:52 -0700 | [diff] [blame^] | 1 | // Copyright 2007, Google Inc. |
| 2 | // All rights reserved. |
| 3 | // |
| 4 | // Redistribution and use in source and binary forms, with or without |
| 5 | // modification, are permitted provided that the following conditions are |
| 6 | // met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright |
| 9 | // notice, this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above |
| 11 | // copyright notice, this list of conditions and the following disclaimer |
| 12 | // in the documentation and/or other materials provided with the |
| 13 | // distribution. |
| 14 | // * Neither the name of Google Inc. nor the names of its |
| 15 | // contributors may be used to endorse or promote products derived from |
| 16 | // this software without specific prior written permission. |
| 17 | // |
| 18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | // |
| 30 | // Author: wan@google.com (Zhanyong Wan) |
| 31 | |
| 32 | // Google Mock - a framework for writing C++ mock classes. |
| 33 | // |
| 34 | // This file implements some commonly used actions. |
| 35 | |
| 36 | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| 37 | #define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |
| 38 | |
| 39 | #ifndef _WIN32_WCE |
| 40 | # include <errno.h> |
| 41 | #endif |
| 42 | |
| 43 | #include <algorithm> |
| 44 | #include <string> |
| 45 | |
| 46 | #include "gmock/internal/gmock-internal-utils.h" |
| 47 | #include "gmock/internal/gmock-port.h" |
| 48 | |
| 49 | #if GTEST_LANG_CXX11 // Defined by gtest-port.h via gmock-port.h. |
| 50 | #include <type_traits> |
| 51 | #endif |
| 52 | |
| 53 | namespace testing { |
| 54 | |
| 55 | // To implement an action Foo, define: |
| 56 | // 1. a class FooAction that implements the ActionInterface interface, and |
| 57 | // 2. a factory function that creates an Action object from a |
| 58 | // const FooAction*. |
| 59 | // |
| 60 | // The two-level delegation design follows that of Matcher, providing |
| 61 | // consistency for extension developers. It also eases ownership |
| 62 | // management as Action objects can now be copied like plain values. |
| 63 | |
| 64 | namespace internal { |
| 65 | |
| 66 | template <typename F1, typename F2> |
| 67 | class ActionAdaptor; |
| 68 | |
| 69 | // BuiltInDefaultValueGetter<T, true>::Get() returns a |
| 70 | // default-constructed T value. BuiltInDefaultValueGetter<T, |
| 71 | // false>::Get() crashes with an error. |
| 72 | // |
| 73 | // This primary template is used when kDefaultConstructible is true. |
| 74 | template <typename T, bool kDefaultConstructible> |
| 75 | struct BuiltInDefaultValueGetter { |
| 76 | static T Get() { return T(); } |
| 77 | }; |
| 78 | template <typename T> |
| 79 | struct BuiltInDefaultValueGetter<T, false> { |
| 80 | static T Get() { |
| 81 | Assert(false, __FILE__, __LINE__, |
| 82 | "Default action undefined for the function return type."); |
| 83 | return internal::Invalid<T>(); |
| 84 | // The above statement will never be reached, but is required in |
| 85 | // order for this function to compile. |
| 86 | } |
| 87 | }; |
| 88 | |
| 89 | // BuiltInDefaultValue<T>::Get() returns the "built-in" default value |
| 90 | // for type T, which is NULL when T is a raw pointer type, 0 when T is |
| 91 | // a numeric type, false when T is bool, or "" when T is string or |
| 92 | // std::string. In addition, in C++11 and above, it turns a |
| 93 | // default-constructed T value if T is default constructible. For any |
| 94 | // other type T, the built-in default T value is undefined, and the |
| 95 | // function will abort the process. |
| 96 | template <typename T> |
| 97 | class BuiltInDefaultValue { |
| 98 | public: |
| 99 | #if GTEST_LANG_CXX11 |
| 100 | // This function returns true iff type T has a built-in default value. |
| 101 | static bool Exists() { |
| 102 | return ::std::is_default_constructible<T>::value; |
| 103 | } |
| 104 | |
| 105 | static T Get() { |
| 106 | return BuiltInDefaultValueGetter< |
| 107 | T, ::std::is_default_constructible<T>::value>::Get(); |
| 108 | } |
| 109 | |
| 110 | #else // GTEST_LANG_CXX11 |
| 111 | // This function returns true iff type T has a built-in default value. |
| 112 | static bool Exists() { |
| 113 | return false; |
| 114 | } |
| 115 | |
| 116 | static T Get() { |
| 117 | return BuiltInDefaultValueGetter<T, false>::Get(); |
| 118 | } |
| 119 | |
| 120 | #endif // GTEST_LANG_CXX11 |
| 121 | }; |
| 122 | |
| 123 | // This partial specialization says that we use the same built-in |
| 124 | // default value for T and const T. |
| 125 | template <typename T> |
| 126 | class BuiltInDefaultValue<const T> { |
| 127 | public: |
| 128 | static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } |
| 129 | static T Get() { return BuiltInDefaultValue<T>::Get(); } |
| 130 | }; |
| 131 | |
| 132 | // This partial specialization defines the default values for pointer |
| 133 | // types. |
| 134 | template <typename T> |
| 135 | class BuiltInDefaultValue<T*> { |
| 136 | public: |
| 137 | static bool Exists() { return true; } |
| 138 | static T* Get() { return NULL; } |
| 139 | }; |
| 140 | |
| 141 | // The following specializations define the default values for |
| 142 | // specific types we care about. |
| 143 | #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ |
| 144 | template <> \ |
| 145 | class BuiltInDefaultValue<type> { \ |
| 146 | public: \ |
| 147 | static bool Exists() { return true; } \ |
| 148 | static type Get() { return value; } \ |
| 149 | } |
| 150 | |
| 151 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT |
| 152 | #if GTEST_HAS_GLOBAL_STRING |
| 153 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, ""); |
| 154 | #endif // GTEST_HAS_GLOBAL_STRING |
| 155 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); |
| 156 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); |
| 157 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); |
| 158 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); |
| 159 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); |
| 160 | |
| 161 | // There's no need for a default action for signed wchar_t, as that |
| 162 | // type is the same as wchar_t for gcc, and invalid for MSVC. |
| 163 | // |
| 164 | // There's also no need for a default action for unsigned wchar_t, as |
| 165 | // that type is the same as unsigned int for gcc, and invalid for |
| 166 | // MSVC. |
| 167 | #if GMOCK_WCHAR_T_IS_NATIVE_ |
| 168 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT |
| 169 | #endif |
| 170 | |
| 171 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT |
| 172 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT |
| 173 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); |
| 174 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); |
| 175 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT |
| 176 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT |
| 177 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0); |
| 178 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0); |
| 179 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); |
| 180 | GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); |
| 181 | |
| 182 | #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ |
| 183 | |
| 184 | } // namespace internal |
| 185 | |
| 186 | // When an unexpected function call is encountered, Google Mock will |
| 187 | // let it return a default value if the user has specified one for its |
| 188 | // return type, or if the return type has a built-in default value; |
| 189 | // otherwise Google Mock won't know what value to return and will have |
| 190 | // to abort the process. |
| 191 | // |
| 192 | // The DefaultValue<T> class allows a user to specify the |
| 193 | // default value for a type T that is both copyable and publicly |
| 194 | // destructible (i.e. anything that can be used as a function return |
| 195 | // type). The usage is: |
| 196 | // |
| 197 | // // Sets the default value for type T to be foo. |
| 198 | // DefaultValue<T>::Set(foo); |
| 199 | template <typename T> |
| 200 | class DefaultValue { |
| 201 | public: |
| 202 | // Sets the default value for type T; requires T to be |
| 203 | // copy-constructable and have a public destructor. |
| 204 | static void Set(T x) { |
| 205 | delete producer_; |
| 206 | producer_ = new FixedValueProducer(x); |
| 207 | } |
| 208 | |
| 209 | // Provides a factory function to be called to generate the default value. |
| 210 | // This method can be used even if T is only move-constructible, but it is not |
| 211 | // limited to that case. |
| 212 | typedef T (*FactoryFunction)(); |
| 213 | static void SetFactory(FactoryFunction factory) { |
| 214 | delete producer_; |
| 215 | producer_ = new FactoryValueProducer(factory); |
| 216 | } |
| 217 | |
| 218 | // Unsets the default value for type T. |
| 219 | static void Clear() { |
| 220 | delete producer_; |
| 221 | producer_ = NULL; |
| 222 | } |
| 223 | |
| 224 | // Returns true iff the user has set the default value for type T. |
| 225 | static bool IsSet() { return producer_ != NULL; } |
| 226 | |
| 227 | // Returns true if T has a default return value set by the user or there |
| 228 | // exists a built-in default value. |
| 229 | static bool Exists() { |
| 230 | return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); |
| 231 | } |
| 232 | |
| 233 | // Returns the default value for type T if the user has set one; |
| 234 | // otherwise returns the built-in default value. Requires that Exists() |
| 235 | // is true, which ensures that the return value is well-defined. |
| 236 | static T Get() { |
| 237 | return producer_ == NULL ? |
| 238 | internal::BuiltInDefaultValue<T>::Get() : producer_->Produce(); |
| 239 | } |
| 240 | |
| 241 | private: |
| 242 | class ValueProducer { |
| 243 | public: |
| 244 | virtual ~ValueProducer() {} |
| 245 | virtual T Produce() = 0; |
| 246 | }; |
| 247 | |
| 248 | class FixedValueProducer : public ValueProducer { |
| 249 | public: |
| 250 | explicit FixedValueProducer(T value) : value_(value) {} |
| 251 | virtual T Produce() { return value_; } |
| 252 | |
| 253 | private: |
| 254 | const T value_; |
| 255 | GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer); |
| 256 | }; |
| 257 | |
| 258 | class FactoryValueProducer : public ValueProducer { |
| 259 | public: |
| 260 | explicit FactoryValueProducer(FactoryFunction factory) |
| 261 | : factory_(factory) {} |
| 262 | virtual T Produce() { return factory_(); } |
| 263 | |
| 264 | private: |
| 265 | const FactoryFunction factory_; |
| 266 | GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer); |
| 267 | }; |
| 268 | |
| 269 | static ValueProducer* producer_; |
| 270 | }; |
| 271 | |
| 272 | // This partial specialization allows a user to set default values for |
| 273 | // reference types. |
| 274 | template <typename T> |
| 275 | class DefaultValue<T&> { |
| 276 | public: |
| 277 | // Sets the default value for type T&. |
| 278 | static void Set(T& x) { // NOLINT |
| 279 | address_ = &x; |
| 280 | } |
| 281 | |
| 282 | // Unsets the default value for type T&. |
| 283 | static void Clear() { |
| 284 | address_ = NULL; |
| 285 | } |
| 286 | |
| 287 | // Returns true iff the user has set the default value for type T&. |
| 288 | static bool IsSet() { return address_ != NULL; } |
| 289 | |
| 290 | // Returns true if T has a default return value set by the user or there |
| 291 | // exists a built-in default value. |
| 292 | static bool Exists() { |
| 293 | return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); |
| 294 | } |
| 295 | |
| 296 | // Returns the default value for type T& if the user has set one; |
| 297 | // otherwise returns the built-in default value if there is one; |
| 298 | // otherwise aborts the process. |
| 299 | static T& Get() { |
| 300 | return address_ == NULL ? |
| 301 | internal::BuiltInDefaultValue<T&>::Get() : *address_; |
| 302 | } |
| 303 | |
| 304 | private: |
| 305 | static T* address_; |
| 306 | }; |
| 307 | |
| 308 | // This specialization allows DefaultValue<void>::Get() to |
| 309 | // compile. |
| 310 | template <> |
| 311 | class DefaultValue<void> { |
| 312 | public: |
| 313 | static bool Exists() { return true; } |
| 314 | static void Get() {} |
| 315 | }; |
| 316 | |
| 317 | // Points to the user-set default value for type T. |
| 318 | template <typename T> |
| 319 | typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = NULL; |
| 320 | |
| 321 | // Points to the user-set default value for type T&. |
| 322 | template <typename T> |
| 323 | T* DefaultValue<T&>::address_ = NULL; |
| 324 | |
| 325 | // Implement this interface to define an action for function type F. |
| 326 | template <typename F> |
| 327 | class ActionInterface { |
| 328 | public: |
| 329 | typedef typename internal::Function<F>::Result Result; |
| 330 | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| 331 | |
| 332 | ActionInterface() {} |
| 333 | virtual ~ActionInterface() {} |
| 334 | |
| 335 | // Performs the action. This method is not const, as in general an |
| 336 | // action can have side effects and be stateful. For example, a |
| 337 | // get-the-next-element-from-the-collection action will need to |
| 338 | // remember the current element. |
| 339 | virtual Result Perform(const ArgumentTuple& args) = 0; |
| 340 | |
| 341 | private: |
| 342 | GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface); |
| 343 | }; |
| 344 | |
| 345 | // An Action<F> is a copyable and IMMUTABLE (except by assignment) |
| 346 | // object that represents an action to be taken when a mock function |
| 347 | // of type F is called. The implementation of Action<T> is just a |
| 348 | // linked_ptr to const ActionInterface<T>, so copying is fairly cheap. |
| 349 | // Don't inherit from Action! |
| 350 | // |
| 351 | // You can view an object implementing ActionInterface<F> as a |
| 352 | // concrete action (including its current state), and an Action<F> |
| 353 | // object as a handle to it. |
| 354 | template <typename F> |
| 355 | class Action { |
| 356 | public: |
| 357 | typedef typename internal::Function<F>::Result Result; |
| 358 | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| 359 | |
| 360 | // Constructs a null Action. Needed for storing Action objects in |
| 361 | // STL containers. |
| 362 | Action() : impl_(NULL) {} |
| 363 | |
| 364 | // Constructs an Action from its implementation. A NULL impl is |
| 365 | // used to represent the "do-default" action. |
| 366 | explicit Action(ActionInterface<F>* impl) : impl_(impl) {} |
| 367 | |
| 368 | // Copy constructor. |
| 369 | Action(const Action& action) : impl_(action.impl_) {} |
| 370 | |
| 371 | // This constructor allows us to turn an Action<Func> object into an |
| 372 | // Action<F>, as long as F's arguments can be implicitly converted |
| 373 | // to Func's and Func's return type can be implicitly converted to |
| 374 | // F's. |
| 375 | template <typename Func> |
| 376 | explicit Action(const Action<Func>& action); |
| 377 | |
| 378 | // Returns true iff this is the DoDefault() action. |
| 379 | bool IsDoDefault() const { return impl_.get() == NULL; } |
| 380 | |
| 381 | // Performs the action. Note that this method is const even though |
| 382 | // the corresponding method in ActionInterface is not. The reason |
| 383 | // is that a const Action<F> means that it cannot be re-bound to |
| 384 | // another concrete action, not that the concrete action it binds to |
| 385 | // cannot change state. (Think of the difference between a const |
| 386 | // pointer and a pointer to const.) |
| 387 | Result Perform(const ArgumentTuple& args) const { |
| 388 | internal::Assert( |
| 389 | !IsDoDefault(), __FILE__, __LINE__, |
| 390 | "You are using DoDefault() inside a composite action like " |
| 391 | "DoAll() or WithArgs(). This is not supported for technical " |
| 392 | "reasons. Please instead spell out the default action, or " |
| 393 | "assign the default action to an Action variable and use " |
| 394 | "the variable in various places."); |
| 395 | return impl_->Perform(args); |
| 396 | } |
| 397 | |
| 398 | private: |
| 399 | template <typename F1, typename F2> |
| 400 | friend class internal::ActionAdaptor; |
| 401 | |
| 402 | internal::linked_ptr<ActionInterface<F> > impl_; |
| 403 | }; |
| 404 | |
| 405 | // The PolymorphicAction class template makes it easy to implement a |
| 406 | // polymorphic action (i.e. an action that can be used in mock |
| 407 | // functions of than one type, e.g. Return()). |
| 408 | // |
| 409 | // To define a polymorphic action, a user first provides a COPYABLE |
| 410 | // implementation class that has a Perform() method template: |
| 411 | // |
| 412 | // class FooAction { |
| 413 | // public: |
| 414 | // template <typename Result, typename ArgumentTuple> |
| 415 | // Result Perform(const ArgumentTuple& args) const { |
| 416 | // // Processes the arguments and returns a result, using |
| 417 | // // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple. |
| 418 | // } |
| 419 | // ... |
| 420 | // }; |
| 421 | // |
| 422 | // Then the user creates the polymorphic action using |
| 423 | // MakePolymorphicAction(object) where object has type FooAction. See |
| 424 | // the definition of Return(void) and SetArgumentPointee<N>(value) for |
| 425 | // complete examples. |
| 426 | template <typename Impl> |
| 427 | class PolymorphicAction { |
| 428 | public: |
| 429 | explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} |
| 430 | |
| 431 | template <typename F> |
| 432 | operator Action<F>() const { |
| 433 | return Action<F>(new MonomorphicImpl<F>(impl_)); |
| 434 | } |
| 435 | |
| 436 | private: |
| 437 | template <typename F> |
| 438 | class MonomorphicImpl : public ActionInterface<F> { |
| 439 | public: |
| 440 | typedef typename internal::Function<F>::Result Result; |
| 441 | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| 442 | |
| 443 | explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} |
| 444 | |
| 445 | virtual Result Perform(const ArgumentTuple& args) { |
| 446 | return impl_.template Perform<Result>(args); |
| 447 | } |
| 448 | |
| 449 | private: |
| 450 | Impl impl_; |
| 451 | |
| 452 | GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); |
| 453 | }; |
| 454 | |
| 455 | Impl impl_; |
| 456 | |
| 457 | GTEST_DISALLOW_ASSIGN_(PolymorphicAction); |
| 458 | }; |
| 459 | |
| 460 | // Creates an Action from its implementation and returns it. The |
| 461 | // created Action object owns the implementation. |
| 462 | template <typename F> |
| 463 | Action<F> MakeAction(ActionInterface<F>* impl) { |
| 464 | return Action<F>(impl); |
| 465 | } |
| 466 | |
| 467 | // Creates a polymorphic action from its implementation. This is |
| 468 | // easier to use than the PolymorphicAction<Impl> constructor as it |
| 469 | // doesn't require you to explicitly write the template argument, e.g. |
| 470 | // |
| 471 | // MakePolymorphicAction(foo); |
| 472 | // vs |
| 473 | // PolymorphicAction<TypeOfFoo>(foo); |
| 474 | template <typename Impl> |
| 475 | inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { |
| 476 | return PolymorphicAction<Impl>(impl); |
| 477 | } |
| 478 | |
| 479 | namespace internal { |
| 480 | |
| 481 | // Allows an Action<F2> object to pose as an Action<F1>, as long as F2 |
| 482 | // and F1 are compatible. |
| 483 | template <typename F1, typename F2> |
| 484 | class ActionAdaptor : public ActionInterface<F1> { |
| 485 | public: |
| 486 | typedef typename internal::Function<F1>::Result Result; |
| 487 | typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple; |
| 488 | |
| 489 | explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {} |
| 490 | |
| 491 | virtual Result Perform(const ArgumentTuple& args) { |
| 492 | return impl_->Perform(args); |
| 493 | } |
| 494 | |
| 495 | private: |
| 496 | const internal::linked_ptr<ActionInterface<F2> > impl_; |
| 497 | |
| 498 | GTEST_DISALLOW_ASSIGN_(ActionAdaptor); |
| 499 | }; |
| 500 | |
| 501 | // Helper struct to specialize ReturnAction to execute a move instead of a copy |
| 502 | // on return. Useful for move-only types, but could be used on any type. |
| 503 | template <typename T> |
| 504 | struct ByMoveWrapper { |
| 505 | explicit ByMoveWrapper(T value) : payload(internal::move(value)) {} |
| 506 | T payload; |
| 507 | }; |
| 508 | |
| 509 | // Implements the polymorphic Return(x) action, which can be used in |
| 510 | // any function that returns the type of x, regardless of the argument |
| 511 | // types. |
| 512 | // |
| 513 | // Note: The value passed into Return must be converted into |
| 514 | // Function<F>::Result when this action is cast to Action<F> rather than |
| 515 | // when that action is performed. This is important in scenarios like |
| 516 | // |
| 517 | // MOCK_METHOD1(Method, T(U)); |
| 518 | // ... |
| 519 | // { |
| 520 | // Foo foo; |
| 521 | // X x(&foo); |
| 522 | // EXPECT_CALL(mock, Method(_)).WillOnce(Return(x)); |
| 523 | // } |
| 524 | // |
| 525 | // In the example above the variable x holds reference to foo which leaves |
| 526 | // scope and gets destroyed. If copying X just copies a reference to foo, |
| 527 | // that copy will be left with a hanging reference. If conversion to T |
| 528 | // makes a copy of foo, the above code is safe. To support that scenario, we |
| 529 | // need to make sure that the type conversion happens inside the EXPECT_CALL |
| 530 | // statement, and conversion of the result of Return to Action<T(U)> is a |
| 531 | // good place for that. |
| 532 | // |
| 533 | template <typename R> |
| 534 | class ReturnAction { |
| 535 | public: |
| 536 | // Constructs a ReturnAction object from the value to be returned. |
| 537 | // 'value' is passed by value instead of by const reference in order |
| 538 | // to allow Return("string literal") to compile. |
| 539 | explicit ReturnAction(R value) : value_(new R(internal::move(value))) {} |
| 540 | |
| 541 | // This template type conversion operator allows Return(x) to be |
| 542 | // used in ANY function that returns x's type. |
| 543 | template <typename F> |
| 544 | operator Action<F>() const { |
| 545 | // Assert statement belongs here because this is the best place to verify |
| 546 | // conditions on F. It produces the clearest error messages |
| 547 | // in most compilers. |
| 548 | // Impl really belongs in this scope as a local class but can't |
| 549 | // because MSVC produces duplicate symbols in different translation units |
| 550 | // in this case. Until MS fixes that bug we put Impl into the class scope |
| 551 | // and put the typedef both here (for use in assert statement) and |
| 552 | // in the Impl class. But both definitions must be the same. |
| 553 | typedef typename Function<F>::Result Result; |
| 554 | GTEST_COMPILE_ASSERT_( |
| 555 | !is_reference<Result>::value, |
| 556 | use_ReturnRef_instead_of_Return_to_return_a_reference); |
| 557 | return Action<F>(new Impl<R, F>(value_)); |
| 558 | } |
| 559 | |
| 560 | private: |
| 561 | // Implements the Return(x) action for a particular function type F. |
| 562 | template <typename R_, typename F> |
| 563 | class Impl : public ActionInterface<F> { |
| 564 | public: |
| 565 | typedef typename Function<F>::Result Result; |
| 566 | typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| 567 | |
| 568 | // The implicit cast is necessary when Result has more than one |
| 569 | // single-argument constructor (e.g. Result is std::vector<int>) and R |
| 570 | // has a type conversion operator template. In that case, value_(value) |
| 571 | // won't compile as the compiler doesn't known which constructor of |
| 572 | // Result to call. ImplicitCast_ forces the compiler to convert R to |
| 573 | // Result without considering explicit constructors, thus resolving the |
| 574 | // ambiguity. value_ is then initialized using its copy constructor. |
| 575 | explicit Impl(const linked_ptr<R>& value) |
| 576 | : value_before_cast_(*value), |
| 577 | value_(ImplicitCast_<Result>(value_before_cast_)) {} |
| 578 | |
| 579 | virtual Result Perform(const ArgumentTuple&) { return value_; } |
| 580 | |
| 581 | private: |
| 582 | GTEST_COMPILE_ASSERT_(!is_reference<Result>::value, |
| 583 | Result_cannot_be_a_reference_type); |
| 584 | // We save the value before casting just in case it is being cast to a |
| 585 | // wrapper type. |
| 586 | R value_before_cast_; |
| 587 | Result value_; |
| 588 | |
| 589 | GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); |
| 590 | }; |
| 591 | |
| 592 | // Partially specialize for ByMoveWrapper. This version of ReturnAction will |
| 593 | // move its contents instead. |
| 594 | template <typename R_, typename F> |
| 595 | class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> { |
| 596 | public: |
| 597 | typedef typename Function<F>::Result Result; |
| 598 | typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| 599 | |
| 600 | explicit Impl(const linked_ptr<R>& wrapper) |
| 601 | : performed_(false), wrapper_(wrapper) {} |
| 602 | |
| 603 | virtual Result Perform(const ArgumentTuple&) { |
| 604 | GTEST_CHECK_(!performed_) |
| 605 | << "A ByMove() action should only be performed once."; |
| 606 | performed_ = true; |
| 607 | return internal::move(wrapper_->payload); |
| 608 | } |
| 609 | |
| 610 | private: |
| 611 | bool performed_; |
| 612 | const linked_ptr<R> wrapper_; |
| 613 | |
| 614 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 615 | }; |
| 616 | |
| 617 | const linked_ptr<R> value_; |
| 618 | |
| 619 | GTEST_DISALLOW_ASSIGN_(ReturnAction); |
| 620 | }; |
| 621 | |
| 622 | // Implements the ReturnNull() action. |
| 623 | class ReturnNullAction { |
| 624 | public: |
| 625 | // Allows ReturnNull() to be used in any pointer-returning function. In C++11 |
| 626 | // this is enforced by returning nullptr, and in non-C++11 by asserting a |
| 627 | // pointer type on compile time. |
| 628 | template <typename Result, typename ArgumentTuple> |
| 629 | static Result Perform(const ArgumentTuple&) { |
| 630 | #if GTEST_LANG_CXX11 |
| 631 | return nullptr; |
| 632 | #else |
| 633 | GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value, |
| 634 | ReturnNull_can_be_used_to_return_a_pointer_only); |
| 635 | return NULL; |
| 636 | #endif // GTEST_LANG_CXX11 |
| 637 | } |
| 638 | }; |
| 639 | |
| 640 | // Implements the Return() action. |
| 641 | class ReturnVoidAction { |
| 642 | public: |
| 643 | // Allows Return() to be used in any void-returning function. |
| 644 | template <typename Result, typename ArgumentTuple> |
| 645 | static void Perform(const ArgumentTuple&) { |
| 646 | CompileAssertTypesEqual<void, Result>(); |
| 647 | } |
| 648 | }; |
| 649 | |
| 650 | // Implements the polymorphic ReturnRef(x) action, which can be used |
| 651 | // in any function that returns a reference to the type of x, |
| 652 | // regardless of the argument types. |
| 653 | template <typename T> |
| 654 | class ReturnRefAction { |
| 655 | public: |
| 656 | // Constructs a ReturnRefAction object from the reference to be returned. |
| 657 | explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT |
| 658 | |
| 659 | // This template type conversion operator allows ReturnRef(x) to be |
| 660 | // used in ANY function that returns a reference to x's type. |
| 661 | template <typename F> |
| 662 | operator Action<F>() const { |
| 663 | typedef typename Function<F>::Result Result; |
| 664 | // Asserts that the function return type is a reference. This |
| 665 | // catches the user error of using ReturnRef(x) when Return(x) |
| 666 | // should be used, and generates some helpful error message. |
| 667 | GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value, |
| 668 | use_Return_instead_of_ReturnRef_to_return_a_value); |
| 669 | return Action<F>(new Impl<F>(ref_)); |
| 670 | } |
| 671 | |
| 672 | private: |
| 673 | // Implements the ReturnRef(x) action for a particular function type F. |
| 674 | template <typename F> |
| 675 | class Impl : public ActionInterface<F> { |
| 676 | public: |
| 677 | typedef typename Function<F>::Result Result; |
| 678 | typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| 679 | |
| 680 | explicit Impl(T& ref) : ref_(ref) {} // NOLINT |
| 681 | |
| 682 | virtual Result Perform(const ArgumentTuple&) { |
| 683 | return ref_; |
| 684 | } |
| 685 | |
| 686 | private: |
| 687 | T& ref_; |
| 688 | |
| 689 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 690 | }; |
| 691 | |
| 692 | T& ref_; |
| 693 | |
| 694 | GTEST_DISALLOW_ASSIGN_(ReturnRefAction); |
| 695 | }; |
| 696 | |
| 697 | // Implements the polymorphic ReturnRefOfCopy(x) action, which can be |
| 698 | // used in any function that returns a reference to the type of x, |
| 699 | // regardless of the argument types. |
| 700 | template <typename T> |
| 701 | class ReturnRefOfCopyAction { |
| 702 | public: |
| 703 | // Constructs a ReturnRefOfCopyAction object from the reference to |
| 704 | // be returned. |
| 705 | explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT |
| 706 | |
| 707 | // This template type conversion operator allows ReturnRefOfCopy(x) to be |
| 708 | // used in ANY function that returns a reference to x's type. |
| 709 | template <typename F> |
| 710 | operator Action<F>() const { |
| 711 | typedef typename Function<F>::Result Result; |
| 712 | // Asserts that the function return type is a reference. This |
| 713 | // catches the user error of using ReturnRefOfCopy(x) when Return(x) |
| 714 | // should be used, and generates some helpful error message. |
| 715 | GTEST_COMPILE_ASSERT_( |
| 716 | internal::is_reference<Result>::value, |
| 717 | use_Return_instead_of_ReturnRefOfCopy_to_return_a_value); |
| 718 | return Action<F>(new Impl<F>(value_)); |
| 719 | } |
| 720 | |
| 721 | private: |
| 722 | // Implements the ReturnRefOfCopy(x) action for a particular function type F. |
| 723 | template <typename F> |
| 724 | class Impl : public ActionInterface<F> { |
| 725 | public: |
| 726 | typedef typename Function<F>::Result Result; |
| 727 | typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| 728 | |
| 729 | explicit Impl(const T& value) : value_(value) {} // NOLINT |
| 730 | |
| 731 | virtual Result Perform(const ArgumentTuple&) { |
| 732 | return value_; |
| 733 | } |
| 734 | |
| 735 | private: |
| 736 | T value_; |
| 737 | |
| 738 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 739 | }; |
| 740 | |
| 741 | const T value_; |
| 742 | |
| 743 | GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction); |
| 744 | }; |
| 745 | |
| 746 | // Implements the polymorphic DoDefault() action. |
| 747 | class DoDefaultAction { |
| 748 | public: |
| 749 | // This template type conversion operator allows DoDefault() to be |
| 750 | // used in any function. |
| 751 | template <typename F> |
| 752 | operator Action<F>() const { return Action<F>(NULL); } |
| 753 | }; |
| 754 | |
| 755 | // Implements the Assign action to set a given pointer referent to a |
| 756 | // particular value. |
| 757 | template <typename T1, typename T2> |
| 758 | class AssignAction { |
| 759 | public: |
| 760 | AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} |
| 761 | |
| 762 | template <typename Result, typename ArgumentTuple> |
| 763 | void Perform(const ArgumentTuple& /* args */) const { |
| 764 | *ptr_ = value_; |
| 765 | } |
| 766 | |
| 767 | private: |
| 768 | T1* const ptr_; |
| 769 | const T2 value_; |
| 770 | |
| 771 | GTEST_DISALLOW_ASSIGN_(AssignAction); |
| 772 | }; |
| 773 | |
| 774 | #if !GTEST_OS_WINDOWS_MOBILE |
| 775 | |
| 776 | // Implements the SetErrnoAndReturn action to simulate return from |
| 777 | // various system calls and libc functions. |
| 778 | template <typename T> |
| 779 | class SetErrnoAndReturnAction { |
| 780 | public: |
| 781 | SetErrnoAndReturnAction(int errno_value, T result) |
| 782 | : errno_(errno_value), |
| 783 | result_(result) {} |
| 784 | template <typename Result, typename ArgumentTuple> |
| 785 | Result Perform(const ArgumentTuple& /* args */) const { |
| 786 | errno = errno_; |
| 787 | return result_; |
| 788 | } |
| 789 | |
| 790 | private: |
| 791 | const int errno_; |
| 792 | const T result_; |
| 793 | |
| 794 | GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction); |
| 795 | }; |
| 796 | |
| 797 | #endif // !GTEST_OS_WINDOWS_MOBILE |
| 798 | |
| 799 | // Implements the SetArgumentPointee<N>(x) action for any function |
| 800 | // whose N-th argument (0-based) is a pointer to x's type. The |
| 801 | // template parameter kIsProto is true iff type A is ProtocolMessage, |
| 802 | // proto2::Message, or a sub-class of those. |
| 803 | template <size_t N, typename A, bool kIsProto> |
| 804 | class SetArgumentPointeeAction { |
| 805 | public: |
| 806 | // Constructs an action that sets the variable pointed to by the |
| 807 | // N-th function argument to 'value'. |
| 808 | explicit SetArgumentPointeeAction(const A& value) : value_(value) {} |
| 809 | |
| 810 | template <typename Result, typename ArgumentTuple> |
| 811 | void Perform(const ArgumentTuple& args) const { |
| 812 | CompileAssertTypesEqual<void, Result>(); |
| 813 | *::testing::get<N>(args) = value_; |
| 814 | } |
| 815 | |
| 816 | private: |
| 817 | const A value_; |
| 818 | |
| 819 | GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); |
| 820 | }; |
| 821 | |
| 822 | template <size_t N, typename Proto> |
| 823 | class SetArgumentPointeeAction<N, Proto, true> { |
| 824 | public: |
| 825 | // Constructs an action that sets the variable pointed to by the |
| 826 | // N-th function argument to 'proto'. Both ProtocolMessage and |
| 827 | // proto2::Message have the CopyFrom() method, so the same |
| 828 | // implementation works for both. |
| 829 | explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) { |
| 830 | proto_->CopyFrom(proto); |
| 831 | } |
| 832 | |
| 833 | template <typename Result, typename ArgumentTuple> |
| 834 | void Perform(const ArgumentTuple& args) const { |
| 835 | CompileAssertTypesEqual<void, Result>(); |
| 836 | ::testing::get<N>(args)->CopyFrom(*proto_); |
| 837 | } |
| 838 | |
| 839 | private: |
| 840 | const internal::linked_ptr<Proto> proto_; |
| 841 | |
| 842 | GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction); |
| 843 | }; |
| 844 | |
| 845 | // Implements the InvokeWithoutArgs(f) action. The template argument |
| 846 | // FunctionImpl is the implementation type of f, which can be either a |
| 847 | // function pointer or a functor. InvokeWithoutArgs(f) can be used as an |
| 848 | // Action<F> as long as f's type is compatible with F (i.e. f can be |
| 849 | // assigned to a tr1::function<F>). |
| 850 | template <typename FunctionImpl> |
| 851 | class InvokeWithoutArgsAction { |
| 852 | public: |
| 853 | // The c'tor makes a copy of function_impl (either a function |
| 854 | // pointer or a functor). |
| 855 | explicit InvokeWithoutArgsAction(FunctionImpl function_impl) |
| 856 | : function_impl_(function_impl) {} |
| 857 | |
| 858 | // Allows InvokeWithoutArgs(f) to be used as any action whose type is |
| 859 | // compatible with f. |
| 860 | template <typename Result, typename ArgumentTuple> |
| 861 | Result Perform(const ArgumentTuple&) { return function_impl_(); } |
| 862 | |
| 863 | private: |
| 864 | FunctionImpl function_impl_; |
| 865 | |
| 866 | GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction); |
| 867 | }; |
| 868 | |
| 869 | // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. |
| 870 | template <class Class, typename MethodPtr> |
| 871 | class InvokeMethodWithoutArgsAction { |
| 872 | public: |
| 873 | InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr) |
| 874 | : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} |
| 875 | |
| 876 | template <typename Result, typename ArgumentTuple> |
| 877 | Result Perform(const ArgumentTuple&) const { |
| 878 | return (obj_ptr_->*method_ptr_)(); |
| 879 | } |
| 880 | |
| 881 | private: |
| 882 | Class* const obj_ptr_; |
| 883 | const MethodPtr method_ptr_; |
| 884 | |
| 885 | GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction); |
| 886 | }; |
| 887 | |
| 888 | // Implements the IgnoreResult(action) action. |
| 889 | template <typename A> |
| 890 | class IgnoreResultAction { |
| 891 | public: |
| 892 | explicit IgnoreResultAction(const A& action) : action_(action) {} |
| 893 | |
| 894 | template <typename F> |
| 895 | operator Action<F>() const { |
| 896 | // Assert statement belongs here because this is the best place to verify |
| 897 | // conditions on F. It produces the clearest error messages |
| 898 | // in most compilers. |
| 899 | // Impl really belongs in this scope as a local class but can't |
| 900 | // because MSVC produces duplicate symbols in different translation units |
| 901 | // in this case. Until MS fixes that bug we put Impl into the class scope |
| 902 | // and put the typedef both here (for use in assert statement) and |
| 903 | // in the Impl class. But both definitions must be the same. |
| 904 | typedef typename internal::Function<F>::Result Result; |
| 905 | |
| 906 | // Asserts at compile time that F returns void. |
| 907 | CompileAssertTypesEqual<void, Result>(); |
| 908 | |
| 909 | return Action<F>(new Impl<F>(action_)); |
| 910 | } |
| 911 | |
| 912 | private: |
| 913 | template <typename F> |
| 914 | class Impl : public ActionInterface<F> { |
| 915 | public: |
| 916 | typedef typename internal::Function<F>::Result Result; |
| 917 | typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; |
| 918 | |
| 919 | explicit Impl(const A& action) : action_(action) {} |
| 920 | |
| 921 | virtual void Perform(const ArgumentTuple& args) { |
| 922 | // Performs the action and ignores its result. |
| 923 | action_.Perform(args); |
| 924 | } |
| 925 | |
| 926 | private: |
| 927 | // Type OriginalFunction is the same as F except that its return |
| 928 | // type is IgnoredValue. |
| 929 | typedef typename internal::Function<F>::MakeResultIgnoredValue |
| 930 | OriginalFunction; |
| 931 | |
| 932 | const Action<OriginalFunction> action_; |
| 933 | |
| 934 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 935 | }; |
| 936 | |
| 937 | const A action_; |
| 938 | |
| 939 | GTEST_DISALLOW_ASSIGN_(IgnoreResultAction); |
| 940 | }; |
| 941 | |
| 942 | // A ReferenceWrapper<T> object represents a reference to type T, |
| 943 | // which can be either const or not. It can be explicitly converted |
| 944 | // from, and implicitly converted to, a T&. Unlike a reference, |
| 945 | // ReferenceWrapper<T> can be copied and can survive template type |
| 946 | // inference. This is used to support by-reference arguments in the |
| 947 | // InvokeArgument<N>(...) action. The idea was from "reference |
| 948 | // wrappers" in tr1, which we don't have in our source tree yet. |
| 949 | template <typename T> |
| 950 | class ReferenceWrapper { |
| 951 | public: |
| 952 | // Constructs a ReferenceWrapper<T> object from a T&. |
| 953 | explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT |
| 954 | |
| 955 | // Allows a ReferenceWrapper<T> object to be implicitly converted to |
| 956 | // a T&. |
| 957 | operator T&() const { return *pointer_; } |
| 958 | private: |
| 959 | T* pointer_; |
| 960 | }; |
| 961 | |
| 962 | // Allows the expression ByRef(x) to be printed as a reference to x. |
| 963 | template <typename T> |
| 964 | void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) { |
| 965 | T& value = ref; |
| 966 | UniversalPrinter<T&>::Print(value, os); |
| 967 | } |
| 968 | |
| 969 | // Does two actions sequentially. Used for implementing the DoAll(a1, |
| 970 | // a2, ...) action. |
| 971 | template <typename Action1, typename Action2> |
| 972 | class DoBothAction { |
| 973 | public: |
| 974 | DoBothAction(Action1 action1, Action2 action2) |
| 975 | : action1_(action1), action2_(action2) {} |
| 976 | |
| 977 | // This template type conversion operator allows DoAll(a1, ..., a_n) |
| 978 | // to be used in ANY function of compatible type. |
| 979 | template <typename F> |
| 980 | operator Action<F>() const { |
| 981 | return Action<F>(new Impl<F>(action1_, action2_)); |
| 982 | } |
| 983 | |
| 984 | private: |
| 985 | // Implements the DoAll(...) action for a particular function type F. |
| 986 | template <typename F> |
| 987 | class Impl : public ActionInterface<F> { |
| 988 | public: |
| 989 | typedef typename Function<F>::Result Result; |
| 990 | typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
| 991 | typedef typename Function<F>::MakeResultVoid VoidResult; |
| 992 | |
| 993 | Impl(const Action<VoidResult>& action1, const Action<F>& action2) |
| 994 | : action1_(action1), action2_(action2) {} |
| 995 | |
| 996 | virtual Result Perform(const ArgumentTuple& args) { |
| 997 | action1_.Perform(args); |
| 998 | return action2_.Perform(args); |
| 999 | } |
| 1000 | |
| 1001 | private: |
| 1002 | const Action<VoidResult> action1_; |
| 1003 | const Action<F> action2_; |
| 1004 | |
| 1005 | GTEST_DISALLOW_ASSIGN_(Impl); |
| 1006 | }; |
| 1007 | |
| 1008 | Action1 action1_; |
| 1009 | Action2 action2_; |
| 1010 | |
| 1011 | GTEST_DISALLOW_ASSIGN_(DoBothAction); |
| 1012 | }; |
| 1013 | |
| 1014 | } // namespace internal |
| 1015 | |
| 1016 | // An Unused object can be implicitly constructed from ANY value. |
| 1017 | // This is handy when defining actions that ignore some or all of the |
| 1018 | // mock function arguments. For example, given |
| 1019 | // |
| 1020 | // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); |
| 1021 | // MOCK_METHOD3(Bar, double(int index, double x, double y)); |
| 1022 | // |
| 1023 | // instead of |
| 1024 | // |
| 1025 | // double DistanceToOriginWithLabel(const string& label, double x, double y) { |
| 1026 | // return sqrt(x*x + y*y); |
| 1027 | // } |
| 1028 | // double DistanceToOriginWithIndex(int index, double x, double y) { |
| 1029 | // return sqrt(x*x + y*y); |
| 1030 | // } |
| 1031 | // ... |
| 1032 | // EXEPCT_CALL(mock, Foo("abc", _, _)) |
| 1033 | // .WillOnce(Invoke(DistanceToOriginWithLabel)); |
| 1034 | // EXEPCT_CALL(mock, Bar(5, _, _)) |
| 1035 | // .WillOnce(Invoke(DistanceToOriginWithIndex)); |
| 1036 | // |
| 1037 | // you could write |
| 1038 | // |
| 1039 | // // We can declare any uninteresting argument as Unused. |
| 1040 | // double DistanceToOrigin(Unused, double x, double y) { |
| 1041 | // return sqrt(x*x + y*y); |
| 1042 | // } |
| 1043 | // ... |
| 1044 | // EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); |
| 1045 | // EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); |
| 1046 | typedef internal::IgnoredValue Unused; |
| 1047 | |
| 1048 | // This constructor allows us to turn an Action<From> object into an |
| 1049 | // Action<To>, as long as To's arguments can be implicitly converted |
| 1050 | // to From's and From's return type cann be implicitly converted to |
| 1051 | // To's. |
| 1052 | template <typename To> |
| 1053 | template <typename From> |
| 1054 | Action<To>::Action(const Action<From>& from) |
| 1055 | : impl_(new internal::ActionAdaptor<To, From>(from)) {} |
| 1056 | |
| 1057 | // Creates an action that returns 'value'. 'value' is passed by value |
| 1058 | // instead of const reference - otherwise Return("string literal") |
| 1059 | // will trigger a compiler error about using array as initializer. |
| 1060 | template <typename R> |
| 1061 | internal::ReturnAction<R> Return(R value) { |
| 1062 | return internal::ReturnAction<R>(internal::move(value)); |
| 1063 | } |
| 1064 | |
| 1065 | // Creates an action that returns NULL. |
| 1066 | inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { |
| 1067 | return MakePolymorphicAction(internal::ReturnNullAction()); |
| 1068 | } |
| 1069 | |
| 1070 | // Creates an action that returns from a void function. |
| 1071 | inline PolymorphicAction<internal::ReturnVoidAction> Return() { |
| 1072 | return MakePolymorphicAction(internal::ReturnVoidAction()); |
| 1073 | } |
| 1074 | |
| 1075 | // Creates an action that returns the reference to a variable. |
| 1076 | template <typename R> |
| 1077 | inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT |
| 1078 | return internal::ReturnRefAction<R>(x); |
| 1079 | } |
| 1080 | |
| 1081 | // Creates an action that returns the reference to a copy of the |
| 1082 | // argument. The copy is created when the action is constructed and |
| 1083 | // lives as long as the action. |
| 1084 | template <typename R> |
| 1085 | inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { |
| 1086 | return internal::ReturnRefOfCopyAction<R>(x); |
| 1087 | } |
| 1088 | |
| 1089 | // Modifies the parent action (a Return() action) to perform a move of the |
| 1090 | // argument instead of a copy. |
| 1091 | // Return(ByMove()) actions can only be executed once and will assert this |
| 1092 | // invariant. |
| 1093 | template <typename R> |
| 1094 | internal::ByMoveWrapper<R> ByMove(R x) { |
| 1095 | return internal::ByMoveWrapper<R>(internal::move(x)); |
| 1096 | } |
| 1097 | |
| 1098 | // Creates an action that does the default action for the give mock function. |
| 1099 | inline internal::DoDefaultAction DoDefault() { |
| 1100 | return internal::DoDefaultAction(); |
| 1101 | } |
| 1102 | |
| 1103 | // Creates an action that sets the variable pointed by the N-th |
| 1104 | // (0-based) function argument to 'value'. |
| 1105 | template <size_t N, typename T> |
| 1106 | PolymorphicAction< |
| 1107 | internal::SetArgumentPointeeAction< |
| 1108 | N, T, internal::IsAProtocolMessage<T>::value> > |
| 1109 | SetArgPointee(const T& x) { |
| 1110 | return MakePolymorphicAction(internal::SetArgumentPointeeAction< |
| 1111 | N, T, internal::IsAProtocolMessage<T>::value>(x)); |
| 1112 | } |
| 1113 | |
| 1114 | #if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN) |
| 1115 | // This overload allows SetArgPointee() to accept a string literal. |
| 1116 | // GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish |
| 1117 | // this overload from the templated version and emit a compile error. |
| 1118 | template <size_t N> |
| 1119 | PolymorphicAction< |
| 1120 | internal::SetArgumentPointeeAction<N, const char*, false> > |
| 1121 | SetArgPointee(const char* p) { |
| 1122 | return MakePolymorphicAction(internal::SetArgumentPointeeAction< |
| 1123 | N, const char*, false>(p)); |
| 1124 | } |
| 1125 | |
| 1126 | template <size_t N> |
| 1127 | PolymorphicAction< |
| 1128 | internal::SetArgumentPointeeAction<N, const wchar_t*, false> > |
| 1129 | SetArgPointee(const wchar_t* p) { |
| 1130 | return MakePolymorphicAction(internal::SetArgumentPointeeAction< |
| 1131 | N, const wchar_t*, false>(p)); |
| 1132 | } |
| 1133 | #endif |
| 1134 | |
| 1135 | // The following version is DEPRECATED. |
| 1136 | template <size_t N, typename T> |
| 1137 | PolymorphicAction< |
| 1138 | internal::SetArgumentPointeeAction< |
| 1139 | N, T, internal::IsAProtocolMessage<T>::value> > |
| 1140 | SetArgumentPointee(const T& x) { |
| 1141 | return MakePolymorphicAction(internal::SetArgumentPointeeAction< |
| 1142 | N, T, internal::IsAProtocolMessage<T>::value>(x)); |
| 1143 | } |
| 1144 | |
| 1145 | // Creates an action that sets a pointer referent to a given value. |
| 1146 | template <typename T1, typename T2> |
| 1147 | PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) { |
| 1148 | return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); |
| 1149 | } |
| 1150 | |
| 1151 | #if !GTEST_OS_WINDOWS_MOBILE |
| 1152 | |
| 1153 | // Creates an action that sets errno and returns the appropriate error. |
| 1154 | template <typename T> |
| 1155 | PolymorphicAction<internal::SetErrnoAndReturnAction<T> > |
| 1156 | SetErrnoAndReturn(int errval, T result) { |
| 1157 | return MakePolymorphicAction( |
| 1158 | internal::SetErrnoAndReturnAction<T>(errval, result)); |
| 1159 | } |
| 1160 | |
| 1161 | #endif // !GTEST_OS_WINDOWS_MOBILE |
| 1162 | |
| 1163 | // Various overloads for InvokeWithoutArgs(). |
| 1164 | |
| 1165 | // Creates an action that invokes 'function_impl' with no argument. |
| 1166 | template <typename FunctionImpl> |
| 1167 | PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> > |
| 1168 | InvokeWithoutArgs(FunctionImpl function_impl) { |
| 1169 | return MakePolymorphicAction( |
| 1170 | internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl)); |
| 1171 | } |
| 1172 | |
| 1173 | // Creates an action that invokes the given method on the given object |
| 1174 | // with no argument. |
| 1175 | template <class Class, typename MethodPtr> |
| 1176 | PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> > |
| 1177 | InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) { |
| 1178 | return MakePolymorphicAction( |
| 1179 | internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>( |
| 1180 | obj_ptr, method_ptr)); |
| 1181 | } |
| 1182 | |
| 1183 | // Creates an action that performs an_action and throws away its |
| 1184 | // result. In other words, it changes the return type of an_action to |
| 1185 | // void. an_action MUST NOT return void, or the code won't compile. |
| 1186 | template <typename A> |
| 1187 | inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { |
| 1188 | return internal::IgnoreResultAction<A>(an_action); |
| 1189 | } |
| 1190 | |
| 1191 | // Creates a reference wrapper for the given L-value. If necessary, |
| 1192 | // you can explicitly specify the type of the reference. For example, |
| 1193 | // suppose 'derived' is an object of type Derived, ByRef(derived) |
| 1194 | // would wrap a Derived&. If you want to wrap a const Base& instead, |
| 1195 | // where Base is a base class of Derived, just write: |
| 1196 | // |
| 1197 | // ByRef<const Base>(derived) |
| 1198 | template <typename T> |
| 1199 | inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT |
| 1200 | return internal::ReferenceWrapper<T>(l_value); |
| 1201 | } |
| 1202 | |
| 1203 | } // namespace testing |
| 1204 | |
| 1205 | #endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ |