blob: 1c28bdf41120757bcd1ed50056000044f4fb5e15 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
6/*
7
8NOTE: this routine has been adapted from the CSparse library:
9
10Copyright (c) 2006, Timothy A. Davis.
11http://www.cise.ufl.edu/research/sparse/CSparse
12
13CSparse is free software; you can redistribute it and/or
14modify it under the terms of the GNU Lesser General Public
15License as published by the Free Software Foundation; either
16version 2.1 of the License, or (at your option) any later version.
17
18CSparse is distributed in the hope that it will be useful,
19but WITHOUT ANY WARRANTY; without even the implied warranty of
20MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21Lesser General Public License for more details.
22
23You should have received a copy of the GNU Lesser General Public
24License along with this Module; if not, write to the Free Software
25Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
26
27*/
28
29#include "../Core/util/NonMPL2.h"
30
31#ifndef EIGEN_SPARSE_AMD_H
32#define EIGEN_SPARSE_AMD_H
33
34namespace Eigen {
35
36namespace internal {
37
38template<typename T> inline T amd_flip(const T& i) { return -i-2; }
39template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; }
40template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; }
41template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); }
42
43/* clear w */
44template<typename Index>
45static int cs_wclear (Index mark, Index lemax, Index *w, Index n)
46{
47 Index k;
48 if(mark < 2 || (mark + lemax < 0))
49 {
50 for(k = 0; k < n; k++)
51 if(w[k] != 0)
52 w[k] = 1;
53 mark = 2;
54 }
55 return (mark); /* at this point, w[0..n-1] < mark holds */
56}
57
58/* depth-first search and postorder of a tree rooted at node j */
59template<typename Index>
60Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack)
61{
62 int i, p, top = 0;
63 if(!head || !next || !post || !stack) return (-1); /* check inputs */
64 stack[0] = j; /* place j on the stack */
65 while (top >= 0) /* while (stack is not empty) */
66 {
67 p = stack[top]; /* p = top of stack */
68 i = head[p]; /* i = youngest child of p */
69 if(i == -1)
70 {
71 top--; /* p has no unordered children left */
72 post[k++] = p; /* node p is the kth postordered node */
73 }
74 else
75 {
76 head[p] = next[i]; /* remove i from children of p */
77 stack[++top] = i; /* start dfs on child node i */
78 }
79 }
80 return k;
81}
82
83
84/** \internal
85 * \ingroup OrderingMethods_Module
86 * Approximate minimum degree ordering algorithm.
87 * \returns the permutation P reducing the fill-in of the input matrix \a C
88 * The input matrix \a C must be a selfadjoint compressed column major SparseMatrix object. Both the upper and lower parts have to be stored, but the diagonal entries are optional.
89 * On exit the values of C are destroyed */
90template<typename Scalar, typename Index>
91void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, PermutationMatrix<Dynamic,Dynamic,Index>& perm)
92{
93 using std::sqrt;
94
95 int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
96 k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
97 ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t;
98 unsigned int h;
99
100 Index n = C.cols();
101 dense = std::max<Index> (16, Index(10 * sqrt(double(n)))); /* find dense threshold */
102 dense = std::min<Index> (n-2, dense);
103
104 Index cnz = C.nonZeros();
105 perm.resize(n+1);
106 t = cnz + cnz/5 + 2*n; /* add elbow room to C */
107 C.resizeNonZeros(t);
108
109 Index* W = new Index[8*(n+1)]; /* get workspace */
110 Index* len = W;
111 Index* nv = W + (n+1);
112 Index* next = W + 2*(n+1);
113 Index* head = W + 3*(n+1);
114 Index* elen = W + 4*(n+1);
115 Index* degree = W + 5*(n+1);
116 Index* w = W + 6*(n+1);
117 Index* hhead = W + 7*(n+1);
118 Index* last = perm.indices().data(); /* use P as workspace for last */
119
120 /* --- Initialize quotient graph ---------------------------------------- */
121 Index* Cp = C.outerIndexPtr();
122 Index* Ci = C.innerIndexPtr();
123 for(k = 0; k < n; k++)
124 len[k] = Cp[k+1] - Cp[k];
125 len[n] = 0;
126 nzmax = t;
127
128 for(i = 0; i <= n; i++)
129 {
130 head[i] = -1; // degree list i is empty
131 last[i] = -1;
132 next[i] = -1;
133 hhead[i] = -1; // hash list i is empty
134 nv[i] = 1; // node i is just one node
135 w[i] = 1; // node i is alive
136 elen[i] = 0; // Ek of node i is empty
137 degree[i] = len[i]; // degree of node i
138 }
139 mark = internal::cs_wclear<Index>(0, 0, w, n); /* clear w */
140 elen[n] = -2; /* n is a dead element */
141 Cp[n] = -1; /* n is a root of assembly tree */
142 w[n] = 0; /* n is a dead element */
143
144 /* --- Initialize degree lists ------------------------------------------ */
145 for(i = 0; i < n; i++)
146 {
147 bool has_diag = false;
148 for(p = Cp[i]; p<Cp[i+1]; ++p)
149 if(Ci[p]==i)
150 {
151 has_diag = true;
152 break;
153 }
154
155 d = degree[i];
156 if(d == 1) /* node i is empty */
157 {
158 elen[i] = -2; /* element i is dead */
159 nel++;
160 Cp[i] = -1; /* i is a root of assembly tree */
161 w[i] = 0;
162 }
163 else if(d > dense || !has_diag) /* node i is dense or has no structural diagonal element */
164 {
165 nv[i] = 0; /* absorb i into element n */
166 elen[i] = -1; /* node i is dead */
167 nel++;
168 Cp[i] = amd_flip (n);
169 nv[n]++;
170 }
171 else
172 {
173 if(head[d] != -1) last[head[d]] = i;
174 next[i] = head[d]; /* put node i in degree list d */
175 head[d] = i;
176 }
177 }
178
179 elen[n] = -2; /* n is a dead element */
180 Cp[n] = -1; /* n is a root of assembly tree */
181 w[n] = 0; /* n is a dead element */
182
183 while (nel < n) /* while (selecting pivots) do */
184 {
185 /* --- Select node of minimum approximate degree -------------------- */
186 for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {}
187 if(next[k] != -1) last[next[k]] = -1;
188 head[mindeg] = next[k]; /* remove k from degree list */
189 elenk = elen[k]; /* elenk = |Ek| */
190 nvk = nv[k]; /* # of nodes k represents */
191 nel += nvk; /* nv[k] nodes of A eliminated */
192
193 /* --- Garbage collection ------------------------------------------- */
194 if(elenk > 0 && cnz + mindeg >= nzmax)
195 {
196 for(j = 0; j < n; j++)
197 {
198 if((p = Cp[j]) >= 0) /* j is a live node or element */
199 {
200 Cp[j] = Ci[p]; /* save first entry of object */
201 Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */
202 }
203 }
204 for(q = 0, p = 0; p < cnz; ) /* scan all of memory */
205 {
206 if((j = amd_flip (Ci[p++])) >= 0) /* found object j */
207 {
208 Ci[q] = Cp[j]; /* restore first entry of object */
209 Cp[j] = q++; /* new pointer to object j */
210 for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
211 }
212 }
213 cnz = q; /* Ci[cnz...nzmax-1] now free */
214 }
215
216 /* --- Construct new element ---------------------------------------- */
217 dk = 0;
218 nv[k] = -nvk; /* flag k as in Lk */
219 p = Cp[k];
220 pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */
221 pk2 = pk1;
222 for(k1 = 1; k1 <= elenk + 1; k1++)
223 {
224 if(k1 > elenk)
225 {
226 e = k; /* search the nodes in k */
227 pj = p; /* list of nodes starts at Ci[pj]*/
228 ln = len[k] - elenk; /* length of list of nodes in k */
229 }
230 else
231 {
232 e = Ci[p++]; /* search the nodes in e */
233 pj = Cp[e];
234 ln = len[e]; /* length of list of nodes in e */
235 }
236 for(k2 = 1; k2 <= ln; k2++)
237 {
238 i = Ci[pj++];
239 if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */
240 dk += nvi; /* degree[Lk] += size of node i */
241 nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/
242 Ci[pk2++] = i; /* place i in Lk */
243 if(next[i] != -1) last[next[i]] = last[i];
244 if(last[i] != -1) /* remove i from degree list */
245 {
246 next[last[i]] = next[i];
247 }
248 else
249 {
250 head[degree[i]] = next[i];
251 }
252 }
253 if(e != k)
254 {
255 Cp[e] = amd_flip (k); /* absorb e into k */
256 w[e] = 0; /* e is now a dead element */
257 }
258 }
259 if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */
260 degree[k] = dk; /* external degree of k - |Lk\i| */
261 Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */
262 len[k] = pk2 - pk1;
263 elen[k] = -2; /* k is now an element */
264
265 /* --- Find set differences ----------------------------------------- */
266 mark = internal::cs_wclear<Index>(mark, lemax, w, n); /* clear w if necessary */
267 for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */
268 {
269 i = Ci[pk];
270 if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */
271 nvi = -nv[i]; /* nv[i] was negated */
272 wnvi = mark - nvi;
273 for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */
274 {
275 e = Ci[p];
276 if(w[e] >= mark)
277 {
278 w[e] -= nvi; /* decrement |Le\Lk| */
279 }
280 else if(w[e] != 0) /* ensure e is a live element */
281 {
282 w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */
283 }
284 }
285 }
286
287 /* --- Degree update ------------------------------------------------ */
288 for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */
289 {
290 i = Ci[pk]; /* consider node i in Lk */
291 p1 = Cp[i];
292 p2 = p1 + elen[i] - 1;
293 pn = p1;
294 for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */
295 {
296 e = Ci[p];
297 if(w[e] != 0) /* e is an unabsorbed element */
298 {
299 dext = w[e] - mark; /* dext = |Le\Lk| */
300 if(dext > 0)
301 {
302 d += dext; /* sum up the set differences */
303 Ci[pn++] = e; /* keep e in Ei */
304 h += e; /* compute the hash of node i */
305 }
306 else
307 {
308 Cp[e] = amd_flip (k); /* aggressive absorb. e->k */
309 w[e] = 0; /* e is a dead element */
310 }
311 }
312 }
313 elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */
314 p3 = pn;
315 p4 = p1 + len[i];
316 for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */
317 {
318 j = Ci[p];
319 if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */
320 d += nvj; /* degree(i) += |j| */
321 Ci[pn++] = j; /* place j in node list of i */
322 h += j; /* compute hash for node i */
323 }
324 if(d == 0) /* check for mass elimination */
325 {
326 Cp[i] = amd_flip (k); /* absorb i into k */
327 nvi = -nv[i];
328 dk -= nvi; /* |Lk| -= |i| */
329 nvk += nvi; /* |k| += nv[i] */
330 nel += nvi;
331 nv[i] = 0;
332 elen[i] = -1; /* node i is dead */
333 }
334 else
335 {
336 degree[i] = std::min<Index> (degree[i], d); /* update degree(i) */
337 Ci[pn] = Ci[p3]; /* move first node to end */
338 Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */
339 Ci[p1] = k; /* add k as 1st element in of Ei */
340 len[i] = pn - p1 + 1; /* new len of adj. list of node i */
341 h %= n; /* finalize hash of i */
342 next[i] = hhead[h]; /* place i in hash bucket */
343 hhead[h] = i;
344 last[i] = h; /* save hash of i in last[i] */
345 }
346 } /* scan2 is done */
347 degree[k] = dk; /* finalize |Lk| */
348 lemax = std::max<Index>(lemax, dk);
349 mark = internal::cs_wclear<Index>(mark+lemax, lemax, w, n); /* clear w */
350
351 /* --- Supernode detection ------------------------------------------ */
352 for(pk = pk1; pk < pk2; pk++)
353 {
354 i = Ci[pk];
355 if(nv[i] >= 0) continue; /* skip if i is dead */
356 h = last[i]; /* scan hash bucket of node i */
357 i = hhead[h];
358 hhead[h] = -1; /* hash bucket will be empty */
359 for(; i != -1 && next[i] != -1; i = next[i], mark++)
360 {
361 ln = len[i];
362 eln = elen[i];
363 for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
364 jlast = i;
365 for(j = next[i]; j != -1; ) /* compare i with all j */
366 {
367 ok = (len[j] == ln) && (elen[j] == eln);
368 for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
369 {
370 if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/
371 }
372 if(ok) /* i and j are identical */
373 {
374 Cp[j] = amd_flip (i); /* absorb j into i */
375 nv[i] += nv[j];
376 nv[j] = 0;
377 elen[j] = -1; /* node j is dead */
378 j = next[j]; /* delete j from hash bucket */
379 next[jlast] = j;
380 }
381 else
382 {
383 jlast = j; /* j and i are different */
384 j = next[j];
385 }
386 }
387 }
388 }
389
390 /* --- Finalize new element------------------------------------------ */
391 for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */
392 {
393 i = Ci[pk];
394 if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */
395 nv[i] = nvi; /* restore nv[i] */
396 d = degree[i] + dk - nvi; /* compute external degree(i) */
397 d = std::min<Index> (d, n - nel - nvi);
398 if(head[d] != -1) last[head[d]] = i;
399 next[i] = head[d]; /* put i back in degree list */
400 last[i] = -1;
401 head[d] = i;
402 mindeg = std::min<Index> (mindeg, d); /* find new minimum degree */
403 degree[i] = d;
404 Ci[p++] = i; /* place i in Lk */
405 }
406 nv[k] = nvk; /* # nodes absorbed into k */
407 if((len[k] = p-pk1) == 0) /* length of adj list of element k*/
408 {
409 Cp[k] = -1; /* k is a root of the tree */
410 w[k] = 0; /* k is now a dead element */
411 }
412 if(elenk != 0) cnz = p; /* free unused space in Lk */
413 }
414
415 /* --- Postordering ----------------------------------------------------- */
416 for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */
417 for(j = 0; j <= n; j++) head[j] = -1;
418 for(j = n; j >= 0; j--) /* place unordered nodes in lists */
419 {
420 if(nv[j] > 0) continue; /* skip if j is an element */
421 next[j] = head[Cp[j]]; /* place j in list of its parent */
422 head[Cp[j]] = j;
423 }
424 for(e = n; e >= 0; e--) /* place elements in lists */
425 {
426 if(nv[e] <= 0) continue; /* skip unless e is an element */
427 if(Cp[e] != -1)
428 {
429 next[e] = head[Cp[e]]; /* place e in list of its parent */
430 head[Cp[e]] = e;
431 }
432 }
433 for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */
434 {
435 if(Cp[i] == -1) k = internal::cs_tdfs<Index>(i, k, head, next, perm.indices().data(), w);
436 }
437
438 perm.indices().conservativeResize(n);
439
440 delete[] W;
441}
442
443} // namespace internal
444
445} // end namespace Eigen
446
447#endif // EIGEN_SPARSE_AMD_H