Brian Silverman | b6570e3 | 2019-03-21 20:58:32 -0700 | [diff] [blame] | 1 | // This file has the main for the Teensy on the simple receiver board v2 in the |
| 2 | // new robot. |
| 3 | |
| 4 | #include <inttypes.h> |
| 5 | #include <stdio.h> |
| 6 | #include <atomic> |
| 7 | #include <chrono> |
| 8 | #include <cmath> |
| 9 | |
| 10 | #include "frc971/control_loops/drivetrain/polydrivetrain.h" |
| 11 | #include "motors/core/kinetis.h" |
| 12 | #include "motors/core/time.h" |
| 13 | #include "motors/peripheral/can.h" |
| 14 | #include "motors/peripheral/configuration.h" |
| 15 | #include "motors/print/print.h" |
| 16 | #include "motors/seems_reasonable/drivetrain_dog_motor_plant.h" |
| 17 | #include "motors/seems_reasonable/polydrivetrain_dog_motor_plant.h" |
| 18 | #include "motors/util.h" |
| 19 | |
| 20 | namespace frc971 { |
| 21 | namespace motors { |
| 22 | namespace { |
| 23 | |
| 24 | using ::frc971::control_loops::drivetrain::DrivetrainConfig; |
| 25 | using ::frc971::control_loops::drivetrain::PolyDrivetrain; |
| 26 | using ::frc971::constants::ShifterHallEffect; |
| 27 | using ::frc971::control_loops::DrivetrainQueue_Goal; |
| 28 | using ::frc971::control_loops::DrivetrainQueue_Output; |
| 29 | |
| 30 | namespace chrono = ::std::chrono; |
| 31 | |
| 32 | const ShifterHallEffect kThreeStateDriveShifter{0.0, 0.0, 0.25, 0.75}; |
| 33 | |
| 34 | const DrivetrainConfig<float> &GetDrivetrainConfig() { |
| 35 | static DrivetrainConfig<float> kDrivetrainConfig{ |
| 36 | ::frc971::control_loops::drivetrain::ShifterType::NO_SHIFTER, |
| 37 | ::frc971::control_loops::drivetrain::LoopType::OPEN_LOOP, |
| 38 | ::frc971::control_loops::drivetrain::GyroType::SPARTAN_GYRO, |
| 39 | ::frc971::control_loops::drivetrain::IMUType::IMU_X, |
| 40 | |
| 41 | ::motors::seems_reasonable::MakeDrivetrainLoop, |
| 42 | ::motors::seems_reasonable::MakeVelocityDrivetrainLoop, |
| 43 | ::std::function<StateFeedbackLoop<7, 2, 4, float>()>(), |
| 44 | |
| 45 | chrono::duration_cast<chrono::nanoseconds>( |
| 46 | chrono::duration<float>(::motors::seems_reasonable::kDt)), |
| 47 | ::motors::seems_reasonable::kRobotRadius, |
| 48 | ::motors::seems_reasonable::kWheelRadius, ::motors::seems_reasonable::kV, |
| 49 | |
| 50 | ::motors::seems_reasonable::kHighGearRatio, |
| 51 | ::motors::seems_reasonable::kLowGearRatio, ::motors::seems_reasonable::kJ, |
| 52 | ::motors::seems_reasonable::kMass, kThreeStateDriveShifter, |
| 53 | kThreeStateDriveShifter, true /* default_high_gear */, |
| 54 | 0 /* down_offset */, 0.8 /* wheel_non_linearity */, |
| 55 | 1.2 /* quickturn_wheel_multiplier */, 1.5 /* wheel_multiplier */, |
| 56 | }; |
| 57 | |
| 58 | return kDrivetrainConfig; |
| 59 | }; |
| 60 | |
| 61 | |
| 62 | ::std::atomic<PolyDrivetrain<float> *> global_polydrivetrain{nullptr}; |
| 63 | |
| 64 | // Last width we received on each channel. |
| 65 | uint16_t pwm_input_widths[6]; |
| 66 | // When we received a pulse on each channel in milliseconds. |
| 67 | uint32_t pwm_input_times[6]; |
| 68 | |
| 69 | constexpr int kChannelTimeout = 100; |
| 70 | |
| 71 | bool lost_channel(int channel) { |
| 72 | DisableInterrupts disable_interrupts; |
| 73 | if (time_after(millis(), |
| 74 | time_add(pwm_input_times[channel], kChannelTimeout))) { |
| 75 | return true; |
| 76 | } |
| 77 | return false; |
| 78 | } |
| 79 | |
| 80 | // Returns the most recently captured value for the specified input channel |
| 81 | // scaled from -1 to 1, or 0 if it was captured over 100ms ago. |
| 82 | float convert_input_width(int channel) { |
| 83 | uint16_t width; |
| 84 | { |
| 85 | DisableInterrupts disable_interrupts; |
| 86 | if (time_after(millis(), |
| 87 | time_add(pwm_input_times[channel], kChannelTimeout))) { |
| 88 | return 0; |
| 89 | } |
| 90 | |
| 91 | width = pwm_input_widths[channel]; |
| 92 | } |
| 93 | |
| 94 | // Values measured with a channel mapped to a button. |
| 95 | static constexpr uint16_t kMinWidth = 4133; |
| 96 | static constexpr uint16_t kMaxWidth = 7177; |
| 97 | if (width < kMinWidth) { |
| 98 | width = kMinWidth; |
| 99 | } else if (width > kMaxWidth) { |
| 100 | width = kMaxWidth; |
| 101 | } |
| 102 | return (static_cast<float>(2 * (width - kMinWidth)) / |
| 103 | static_cast<float>(kMaxWidth - kMinWidth)) - |
| 104 | 1.0f; |
| 105 | } |
| 106 | |
| 107 | // Sends a SET_RPM command to the specified VESC. |
| 108 | // Note that sending 6 VESC commands every 1ms doesn't quite fit in the CAN |
| 109 | // bandwidth. |
| 110 | void vesc_set_rpm(int vesc_id, float rpm) { |
| 111 | const int32_t rpm_int = rpm; |
| 112 | uint32_t id = CAN_EFF_FLAG; |
| 113 | id |= vesc_id; |
| 114 | id |= (0x03 /* SET_RPM */) << 8; |
| 115 | uint8_t data[4] = { |
| 116 | static_cast<uint8_t>((rpm_int >> 24) & 0xFF), |
| 117 | static_cast<uint8_t>((rpm_int >> 16) & 0xFF), |
| 118 | static_cast<uint8_t>((rpm_int >> 8) & 0xFF), |
| 119 | static_cast<uint8_t>((rpm_int >> 0) & 0xFF), |
| 120 | }; |
| 121 | can_send(id, data, sizeof(data), 2 + vesc_id); |
| 122 | } |
| 123 | |
| 124 | // Sends a SET_CURRENT command to the specified VESC. |
| 125 | // current is in amps. |
| 126 | // Note that sending 6 VESC commands every 1ms doesn't quite fit in the CAN |
| 127 | // bandwidth. |
| 128 | void vesc_set_current(int vesc_id, float current) { |
| 129 | constexpr float kMaxCurrent = 80.0f; |
| 130 | const int32_t current_int = |
| 131 | ::std::max(-kMaxCurrent, ::std::min(kMaxCurrent, current)) * 1000.0f; |
| 132 | uint32_t id = CAN_EFF_FLAG; |
| 133 | id |= vesc_id; |
| 134 | id |= (0x01 /* SET_CURRENT */) << 8; |
| 135 | uint8_t data[4] = { |
| 136 | static_cast<uint8_t>((current_int >> 24) & 0xFF), |
| 137 | static_cast<uint8_t>((current_int >> 16) & 0xFF), |
| 138 | static_cast<uint8_t>((current_int >> 8) & 0xFF), |
| 139 | static_cast<uint8_t>((current_int >> 0) & 0xFF), |
| 140 | }; |
| 141 | can_send(id, data, sizeof(data), 2 + vesc_id); |
| 142 | } |
| 143 | |
| 144 | // Sends a SET_DUTY command to the specified VESC. |
| 145 | // duty is from -1 to 1. |
| 146 | // Note that sending 6 VESC commands every 1ms doesn't quite fit in the CAN |
| 147 | // bandwidth. |
| 148 | void vesc_set_duty(int vesc_id, float duty) { |
| 149 | constexpr int32_t kMaxDuty = 99999; |
| 150 | const int32_t duty_int = ::std::max( |
| 151 | -kMaxDuty, ::std::min(kMaxDuty, static_cast<int32_t>(duty * 100000.0f))); |
| 152 | uint32_t id = CAN_EFF_FLAG; |
| 153 | id |= vesc_id; |
| 154 | id |= (0x00 /* SET_DUTY */) << 8; |
| 155 | uint8_t data[4] = { |
| 156 | static_cast<uint8_t>((duty_int >> 24) & 0xFF), |
| 157 | static_cast<uint8_t>((duty_int >> 16) & 0xFF), |
| 158 | static_cast<uint8_t>((duty_int >> 8) & 0xFF), |
| 159 | static_cast<uint8_t>((duty_int >> 0) & 0xFF), |
| 160 | }; |
| 161 | can_send(id, data, sizeof(data), 2 + vesc_id); |
| 162 | } |
| 163 | |
| 164 | // TODO(Brian): Move these two test functions somewhere else. |
| 165 | __attribute__((unused)) void DoVescTest() { |
| 166 | uint32_t time = micros(); |
| 167 | while (true) { |
| 168 | for (int i = 0; i < 6; ++i) { |
| 169 | const uint32_t end = time_add(time, 500000); |
| 170 | while (true) { |
| 171 | const bool done = time_after(micros(), end); |
| 172 | float current; |
| 173 | if (done) { |
| 174 | current = -6; |
| 175 | } else { |
| 176 | current = 6; |
| 177 | } |
| 178 | vesc_set_current(i, current); |
| 179 | if (done) { |
| 180 | break; |
| 181 | } |
| 182 | delay(5); |
| 183 | } |
| 184 | time = end; |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | __attribute__((unused)) void DoReceiverTest2() { |
| 190 | static constexpr float kMaxRpm = 10000.0f; |
| 191 | while (true) { |
| 192 | const bool flip = convert_input_width(2) > 0; |
| 193 | |
| 194 | { |
| 195 | const float value = convert_input_width(0); |
| 196 | |
| 197 | { |
| 198 | float rpm = ::std::min(0.0f, value) * kMaxRpm; |
| 199 | if (flip) { |
| 200 | rpm *= -1.0f; |
| 201 | } |
| 202 | vesc_set_rpm(0, rpm); |
| 203 | } |
| 204 | |
| 205 | { |
| 206 | float rpm = ::std::max(0.0f, value) * kMaxRpm; |
| 207 | if (flip) { |
| 208 | rpm *= -1.0f; |
| 209 | } |
| 210 | vesc_set_rpm(1, rpm); |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | { |
| 215 | const float value = convert_input_width(1); |
| 216 | |
| 217 | { |
| 218 | float rpm = ::std::min(0.0f, value) * kMaxRpm; |
| 219 | if (flip) { |
| 220 | rpm *= -1.0f; |
| 221 | } |
| 222 | vesc_set_rpm(2, rpm); |
| 223 | } |
| 224 | |
| 225 | { |
| 226 | float rpm = ::std::max(0.0f, value) * kMaxRpm; |
| 227 | if (flip) { |
| 228 | rpm *= -1.0f; |
| 229 | } |
| 230 | vesc_set_rpm(3, rpm); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | { |
| 235 | const float value = convert_input_width(4); |
| 236 | |
| 237 | { |
| 238 | float rpm = ::std::min(0.0f, value) * kMaxRpm; |
| 239 | if (flip) { |
| 240 | rpm *= -1.0f; |
| 241 | } |
| 242 | vesc_set_rpm(4, rpm); |
| 243 | } |
| 244 | |
| 245 | { |
| 246 | float rpm = ::std::max(0.0f, value) * kMaxRpm; |
| 247 | if (flip) { |
| 248 | rpm *= -1.0f; |
| 249 | } |
| 250 | vesc_set_rpm(5, rpm); |
| 251 | } |
| 252 | } |
| 253 | // Give the CAN frames a chance to go out. |
| 254 | delay(5); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | void SetupPwmFtm(BigFTM *ftm) { |
| 259 | ftm->MODE = FTM_MODE_WPDIS; |
| 260 | ftm->MODE = FTM_MODE_WPDIS | FTM_MODE_FTMEN; |
| 261 | ftm->SC = FTM_SC_CLKS(0) /* Disable counting for now */; |
| 262 | |
| 263 | // Can't change MOD according to the reference manual ("The Dual Edge Capture |
| 264 | // mode must be used with ... the FTM counter in Free running counter."). |
| 265 | ftm->MOD = 0xFFFF; |
| 266 | |
| 267 | // Capturing rising edge. |
| 268 | ftm->C0SC = FTM_CSC_MSA | FTM_CSC_ELSA; |
| 269 | // Capturing falling edge. |
| 270 | ftm->C1SC = FTM_CSC_CHIE | FTM_CSC_MSA | FTM_CSC_ELSB; |
| 271 | |
| 272 | // Capturing rising edge. |
| 273 | ftm->C2SC = FTM_CSC_MSA | FTM_CSC_ELSA; |
| 274 | // Capturing falling edge. |
| 275 | ftm->C3SC = FTM_CSC_CHIE | FTM_CSC_MSA | FTM_CSC_ELSB; |
| 276 | |
| 277 | // Capturing rising edge. |
| 278 | ftm->C4SC = FTM_CSC_MSA | FTM_CSC_ELSA; |
| 279 | // Capturing falling edge. |
| 280 | ftm->C5SC = FTM_CSC_CHIE | FTM_CSC_MSA | FTM_CSC_ELSB; |
| 281 | |
| 282 | // Capturing rising edge. |
| 283 | ftm->C6SC = FTM_CSC_MSA | FTM_CSC_ELSA; |
| 284 | // Capturing falling edge. |
| 285 | ftm->C7SC = FTM_CSC_CHIE | FTM_CSC_MSA | FTM_CSC_ELSB; |
| 286 | |
| 287 | (void)ftm->STATUS; |
| 288 | ftm->STATUS = 0x00; |
| 289 | |
| 290 | ftm->COMBINE = FTM_COMBINE_DECAP3 | FTM_COMBINE_DECAPEN3 | |
| 291 | FTM_COMBINE_DECAP2 | FTM_COMBINE_DECAPEN2 | |
| 292 | FTM_COMBINE_DECAP1 | FTM_COMBINE_DECAPEN1 | |
| 293 | FTM_COMBINE_DECAP0 | FTM_COMBINE_DECAPEN0; |
| 294 | |
| 295 | // 34.95ms max period before it starts wrapping and being weird. |
| 296 | ftm->SC = FTM_SC_CLKS(1) /* Use the system clock */ | |
| 297 | FTM_SC_PS(4) /* Prescaler=32 */; |
| 298 | |
| 299 | ftm->MODE &= ~FTM_MODE_WPDIS; |
| 300 | } |
| 301 | |
| 302 | extern "C" void ftm0_isr() { |
| 303 | while (true) { |
| 304 | const uint32_t status = FTM0->STATUS; |
| 305 | if (status == 0) { |
| 306 | return; |
| 307 | } |
| 308 | |
| 309 | if (status & (1 << 1)) { |
| 310 | const uint32_t start = FTM0->C0V; |
| 311 | const uint32_t end = FTM0->C1V; |
| 312 | pwm_input_widths[1] = (end - start) & 0xFFFF; |
| 313 | pwm_input_times[1] = millis(); |
| 314 | } |
| 315 | if (status & (1 << 5)) { |
| 316 | const uint32_t start = FTM0->C4V; |
| 317 | const uint32_t end = FTM0->C5V; |
| 318 | pwm_input_widths[3] = (end - start) & 0xFFFF; |
| 319 | pwm_input_times[3] = millis(); |
| 320 | } |
| 321 | if (status & (1 << 3)) { |
| 322 | const uint32_t start = FTM0->C2V; |
| 323 | const uint32_t end = FTM0->C3V; |
| 324 | pwm_input_widths[4] = (end - start) & 0xFFFF; |
| 325 | pwm_input_times[4] = millis(); |
| 326 | } |
| 327 | |
| 328 | FTM0->STATUS = 0; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | extern "C" void ftm3_isr() { |
| 333 | while (true) { |
| 334 | const uint32_t status = FTM3->STATUS; |
| 335 | if (status == 0) { |
| 336 | return; |
| 337 | } |
| 338 | |
| 339 | FTM3->STATUS = 0; |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | extern "C" void pit3_isr() { |
| 344 | PIT_TFLG3 = 1; |
| 345 | PolyDrivetrain<float> *polydrivetrain = |
| 346 | global_polydrivetrain.load(::std::memory_order_acquire); |
| 347 | |
| 348 | const bool lost_drive_channel = lost_channel(3) || lost_channel(1); |
| 349 | |
| 350 | if (false) { |
| 351 | static int count = 0; |
| 352 | if (++count == 50) { |
| 353 | count = 0; |
| 354 | printf("0: %d 1: %d\n", (int)pwm_input_widths[3], |
| 355 | (int)pwm_input_widths[1]); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | if (polydrivetrain != nullptr) { |
| 360 | DrivetrainQueue_Goal goal; |
| 361 | goal.control_loop_driving = false; |
| 362 | if (lost_drive_channel) { |
| 363 | goal.throttle = 0.0f; |
| 364 | goal.wheel = 0.0f; |
| 365 | } else { |
| 366 | goal.throttle = convert_input_width(1); |
| 367 | goal.wheel = -convert_input_width(3); |
| 368 | } |
| 369 | goal.quickturn = ::std::abs(polydrivetrain->velocity()) < 0.25f; |
| 370 | |
| 371 | if (false) { |
| 372 | static int count = 0; |
| 373 | if (++count == 50) { |
| 374 | count = 0; |
| 375 | printf("throttle: %d wheel: %d\n", (int)(goal.throttle * 100), |
| 376 | (int)(goal.wheel * 100)); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | DrivetrainQueue_Output output; |
| 381 | |
| 382 | polydrivetrain->SetGoal(goal); |
| 383 | polydrivetrain->Update(12.0f); |
| 384 | polydrivetrain->SetOutput(&output); |
| 385 | |
| 386 | if (false) { |
| 387 | static int count = 0; |
| 388 | if (++count == 50) { |
| 389 | count = 0; |
| 390 | printf("l: %d r: %d\n", (int)(output.left_voltage * 100), |
| 391 | (int)(output.right_voltage * 100)); |
| 392 | } |
| 393 | } |
| 394 | vesc_set_duty(0, -output.left_voltage / 12.0f); |
| 395 | vesc_set_duty(1, -output.left_voltage / 12.0f); |
| 396 | |
Brian Silverman | dcb6ad1 | 2019-04-08 18:13:16 -0700 | [diff] [blame] | 397 | vesc_set_duty(2, output.right_voltage / 12.0f); |
| 398 | vesc_set_duty(3, output.right_voltage / 12.0f); |
Brian Silverman | b6570e3 | 2019-03-21 20:58:32 -0700 | [diff] [blame] | 399 | } |
| 400 | } |
| 401 | |
| 402 | } // namespace |
| 403 | |
| 404 | extern "C" { |
| 405 | |
| 406 | void *__stack_chk_guard = (void *)0x67111971; |
| 407 | void __stack_chk_fail(void); |
| 408 | |
| 409 | } // extern "C" |
| 410 | |
| 411 | extern "C" int main(void) { |
| 412 | // for background about this startup delay, please see these conversations |
| 413 | // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980 |
| 414 | // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273 |
| 415 | delay(400); |
| 416 | |
| 417 | // Set all interrupts to the second-lowest priority to start with. |
| 418 | for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD); |
| 419 | |
| 420 | // Now set priorities for all the ones we care about. They only have meaning |
| 421 | // relative to each other, which means centralizing them here makes it a lot |
| 422 | // more manageable. |
| 423 | NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7); |
| 424 | NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0xa); |
| 425 | NVIC_SET_SANE_PRIORITY(IRQ_FTM3, 0xa); |
| 426 | NVIC_SET_SANE_PRIORITY(IRQ_PIT_CH3, 0x5); |
| 427 | |
| 428 | // Builtin LED. |
| 429 | PERIPHERAL_BITBAND(GPIOC_PDOR, 5) = 1; |
| 430 | PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_SRE | PORT_PCR_MUX(1); |
| 431 | PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1; |
| 432 | |
| 433 | // Set up the CAN pins. |
| 434 | PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| 435 | PORTA_PCR13 = PORT_PCR_DSE | PORT_PCR_MUX(2); |
| 436 | |
| 437 | // PWM_IN0 |
| 438 | // FTM0_CH1 (doesn't work) |
| 439 | // PORTC_PCR2 = PORT_PCR_MUX(4); |
| 440 | |
| 441 | // PWM_IN1 |
| 442 | // FTM0_CH0 |
| 443 | PORTC_PCR1 = PORT_PCR_MUX(4); |
| 444 | |
| 445 | // PWM_IN2 |
| 446 | // FTM0_CH5 (doesn't work) |
| 447 | // PORTD_PCR5 = PORT_PCR_MUX(4); |
| 448 | |
| 449 | // PWM_IN3 |
| 450 | // FTM0_CH4 |
| 451 | PORTD_PCR4 = PORT_PCR_MUX(4); |
| 452 | |
| 453 | // PWM_IN4 |
| 454 | // FTM0_CH2 |
| 455 | PORTC_PCR3 = PORT_PCR_MUX(4); |
| 456 | |
| 457 | // PWM_IN5 |
| 458 | // FTM0_CH3 (doesn't work) |
| 459 | // PORTC_PCR4 = PORT_PCR_MUX(4); |
| 460 | |
| 461 | delay(100); |
| 462 | |
| 463 | PrintingParameters printing_parameters; |
| 464 | printing_parameters.dedicated_usb = true; |
| 465 | const ::std::unique_ptr<PrintingImplementation> printing = |
| 466 | CreatePrinting(printing_parameters); |
| 467 | printing->Initialize(); |
| 468 | |
| 469 | SIM_SCGC6 |= SIM_SCGC6_PIT; |
| 470 | // Workaround for errata e7914. |
| 471 | (void)PIT_MCR; |
| 472 | PIT_MCR = 0; |
| 473 | PIT_LDVAL3 = (BUS_CLOCK_FREQUENCY / 200) - 1; |
| 474 | PIT_TCTRL3 = PIT_TCTRL_TIE | PIT_TCTRL_TEN; |
| 475 | |
| 476 | can_init(0, 1); |
| 477 | SetupPwmFtm(FTM0); |
| 478 | SetupPwmFtm(FTM3); |
| 479 | |
| 480 | PolyDrivetrain<float> polydrivetrain(GetDrivetrainConfig(), nullptr); |
| 481 | global_polydrivetrain.store(&polydrivetrain, ::std::memory_order_release); |
| 482 | |
| 483 | // Leave the LED on for a bit longer. |
| 484 | delay(300); |
| 485 | printf("Done starting up\n"); |
| 486 | |
| 487 | // Done starting up, now turn the LED off. |
| 488 | PERIPHERAL_BITBAND(GPIOC_PDOR, 5) = 0; |
| 489 | |
| 490 | NVIC_ENABLE_IRQ(IRQ_FTM0); |
| 491 | NVIC_ENABLE_IRQ(IRQ_FTM3); |
| 492 | NVIC_ENABLE_IRQ(IRQ_PIT_CH3); |
| 493 | printf("Done starting up2\n"); |
| 494 | |
| 495 | while (true) { |
| 496 | } |
| 497 | |
| 498 | return 0; |
| 499 | } |
| 500 | |
| 501 | void __stack_chk_fail(void) { |
| 502 | while (true) { |
| 503 | GPIOC_PSOR = (1 << 5); |
| 504 | printf("Stack corruption detected\n"); |
| 505 | delay(1000); |
| 506 | GPIOC_PCOR = (1 << 5); |
| 507 | delay(1000); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | } // namespace motors |
| 512 | } // namespace frc971 |