blob: 3ae9fe95a6e28abb9f7a4e15420350951ad001d4 [file] [log] [blame]
Brian Silverman17f503e2015-08-02 18:17:18 -07001#!/usr/bin/python
2
Austin Schuhedc317c2015-11-08 14:07:42 -08003from frc971.control_loops.python import control_loop
4from frc971.control_loops.python import controls
5from frc971.control_loops.python import polytope
6from y2014.control_loops.python import polydrivetrain
Brian Silverman17f503e2015-08-02 18:17:18 -07007import numpy
8import sys
9from matplotlib import pylab
Austin Schuha3b42552015-11-27 16:30:12 -080010import gflags
11import glog
12
13FLAGS = gflags.FLAGS
14
15try:
16 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
17except gflags.DuplicateFlagError:
18 pass
Brian Silverman17f503e2015-08-02 18:17:18 -070019
20class Claw(control_loop.ControlLoop):
21 def __init__(self, name="RawClaw"):
22 super(Claw, self).__init__(name)
23 # Stall Torque in N m
24 self.stall_torque = 2.42
25 # Stall Current in Amps
26 self.stall_current = 133
27 # Free Speed in RPM
28 self.free_speed = 5500.0
29 # Free Current in Amps
30 self.free_current = 2.7
31 # Moment of inertia of the claw in kg m^2
32 self.J_top = 2.8
33 self.J_bottom = 3.0
34
35 # Resistance of the motor
36 self.R = 12.0 / self.stall_current
37 # Motor velocity constant
38 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
39 (13.5 - self.R * self.free_current))
40 # Torque constant
41 self.Kt = self.stall_torque / self.stall_current
42 # Gear ratio
43 self.G = 14.0 / 48.0 * 18.0 / 32.0 * 18.0 / 66.0 * 12.0 / 60.0
44 # Control loop time step
Austin Schuhadf2cde2015-11-08 20:35:16 -080045 self.dt = 0.005
Brian Silverman17f503e2015-08-02 18:17:18 -070046
47 # State is [bottom position, bottom velocity, top - bottom position,
48 # top - bottom velocity]
49 # Input is [bottom power, top power - bottom power * J_top / J_bottom]
50 # Motor time constants. difference_bottom refers to the constant for how the
51 # bottom velocity affects the difference of the top and bottom velocities.
52 self.common_motor_constant = -self.Kt / self.Kv / (self.G * self.G * self.R)
53 self.bottom_bottom = self.common_motor_constant / self.J_bottom
54 self.difference_bottom = -self.common_motor_constant * (1 / self.J_bottom
55 - 1 / self.J_top)
56 self.difference_difference = self.common_motor_constant / self.J_top
57 # State feedback matrices
58
59 self.A_continuous = numpy.matrix(
60 [[0, 0, 1, 0],
61 [0, 0, 0, 1],
62 [0, 0, self.bottom_bottom, 0],
63 [0, 0, self.difference_bottom, self.difference_difference]])
64
65 self.A_bottom_cont = numpy.matrix(
66 [[0, 1],
67 [0, self.bottom_bottom]])
68
69 self.A_diff_cont = numpy.matrix(
70 [[0, 1],
71 [0, self.difference_difference]])
72
73 self.motor_feedforward = self.Kt / (self.G * self.R)
74 self.motor_feedforward_bottom = self.motor_feedforward / self.J_bottom
75 self.motor_feedforward_difference = self.motor_feedforward / self.J_top
76 self.motor_feedforward_difference_bottom = (
77 self.motor_feedforward * (1 / self.J_bottom - 1 / self.J_top))
78 self.B_continuous = numpy.matrix(
79 [[0, 0],
80 [0, 0],
81 [self.motor_feedforward_bottom, 0],
82 [-self.motor_feedforward_bottom, self.motor_feedforward_difference]])
83
Austin Schuha3b42552015-11-27 16:30:12 -080084 glog.debug('Cont X_ss %f', self.motor_feedforward / -self.common_motor_constant)
Brian Silverman17f503e2015-08-02 18:17:18 -070085
86 self.B_bottom_cont = numpy.matrix(
87 [[0],
88 [self.motor_feedforward_bottom]])
89
90 self.B_diff_cont = numpy.matrix(
91 [[0],
92 [self.motor_feedforward_difference]])
93
94 self.C = numpy.matrix([[1, 0, 0, 0],
95 [1, 1, 0, 0]])
96 self.D = numpy.matrix([[0, 0],
97 [0, 0]])
98
99 self.A, self.B = self.ContinuousToDiscrete(
100 self.A_continuous, self.B_continuous, self.dt)
101
102 self.A_bottom, self.B_bottom = controls.c2d(
103 self.A_bottom_cont, self.B_bottom_cont, self.dt)
104 self.A_diff, self.B_diff = controls.c2d(
105 self.A_diff_cont, self.B_diff_cont, self.dt)
106
Austin Schuhadf2cde2015-11-08 20:35:16 -0800107 self.K_bottom = controls.dplace(self.A_bottom, self.B_bottom,
108 [0.87 + 0.05j, 0.87 - 0.05j])
109 self.K_diff = controls.dplace(self.A_diff, self.B_diff,
110 [0.85 + 0.05j, 0.85 - 0.05j])
Brian Silverman17f503e2015-08-02 18:17:18 -0700111
Austin Schuha3b42552015-11-27 16:30:12 -0800112 glog.debug('K_diff %s', str(self.K_diff))
113 glog.debug('K_bottom %s', str(self.K_bottom))
Brian Silverman17f503e2015-08-02 18:17:18 -0700114
Austin Schuha3b42552015-11-27 16:30:12 -0800115 glog.debug('A')
116 glog.debug(self.A)
117 glog.debug('B')
118 glog.debug(self.B)
Brian Silverman17f503e2015-08-02 18:17:18 -0700119
120
121 self.Q = numpy.matrix([[(1.0 / (0.10 ** 2.0)), 0.0, 0.0, 0.0],
122 [0.0, (1.0 / (0.06 ** 2.0)), 0.0, 0.0],
123 [0.0, 0.0, 0.10, 0.0],
124 [0.0, 0.0, 0.0, 0.1]])
125
126 self.R = numpy.matrix([[(1.0 / (40.0 ** 2.0)), 0.0],
127 [0.0, (1.0 / (5.0 ** 2.0))]])
128 #self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
129
130 self.K = numpy.matrix([[self.K_bottom[0, 0], 0.0, self.K_bottom[0, 1], 0.0],
131 [0.0, self.K_diff[0, 0], 0.0, self.K_diff[0, 1]]])
132
133 # Compute the feed forwards aceleration term.
134 self.K[1, 0] = -self.B[1, 0] * self.K[0, 0] / self.B[1, 1]
135
136 lstsq_A = numpy.identity(2)
137 lstsq_A[0, :] = self.B[1, :]
138 lstsq_A[1, :] = self.B[3, :]
Austin Schuha3b42552015-11-27 16:30:12 -0800139 glog.debug('System of Equations coefficients:')
140 glog.debug(str(lstsq_A))
141 glog.debug('det %s', str(numpy.linalg.det(lstsq_A)))
Brian Silverman17f503e2015-08-02 18:17:18 -0700142
143 out_x = numpy.linalg.lstsq(
144 lstsq_A,
145 numpy.matrix([[self.A[1, 2]], [self.A[3, 2]]]))[0]
146 self.K[1, 2] = -lstsq_A[0, 0] * (self.K[0, 2] - out_x[0]) / lstsq_A[0, 1] + out_x[1]
147
Austin Schuha3b42552015-11-27 16:30:12 -0800148 glog.debug('K unaugmented')
149 glog.debug(str(self.K))
150 glog.debug('B * K unaugmented')
151 glog.debug(str(self.B * self.K))
Brian Silverman17f503e2015-08-02 18:17:18 -0700152 F = self.A - self.B * self.K
Austin Schuha3b42552015-11-27 16:30:12 -0800153 glog.debug('A - B * K unaugmented')
154 glog.debug(str(F))
155 glog.debug('eigenvalues')
156 glog.debug(str(numpy.linalg.eig(F)[0]))
Brian Silverman17f503e2015-08-02 18:17:18 -0700157
Austin Schuhadf2cde2015-11-08 20:35:16 -0800158 self.rpl = .09
159 self.ipl = 0.030
Brian Silverman17f503e2015-08-02 18:17:18 -0700160 self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
161 self.rpl + 1j * self.ipl,
162 self.rpl - 1j * self.ipl,
163 self.rpl - 1j * self.ipl])
164
165 # The box formed by U_min and U_max must encompass all possible values,
166 # or else Austin's code gets angry.
167 self.U_max = numpy.matrix([[12.0], [12.0]])
168 self.U_min = numpy.matrix([[-12.0], [-12.0]])
169
170 # For the tests that check the limits, these are (upper, lower) for both
171 # claws.
172 self.hard_pos_limits = None
173 self.pos_limits = None
174
175 # Compute the steady state velocities for a given applied voltage.
176 # The top and bottom of the claw should spin at the same rate if the
177 # physics is right.
178 X_ss = numpy.matrix([[0], [0], [0.0], [0]])
179
180 U = numpy.matrix([[1.0],[1.0]])
181 A = self.A
182 B = self.B
183 #X_ss[2, 0] = X_ss[2, 0] * A[2, 2] + B[2, 0] * U[0, 0]
184 X_ss[2, 0] = 1 / (1 - A[2, 2]) * B[2, 0] * U[0, 0]
185 #X_ss[3, 0] = X_ss[3, 0] * A[3, 3] + X_ss[2, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
186 #X_ss[3, 0] * (1 - A[3, 3]) = X_ss[2, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
187 X_ss[3, 0] = 1 / (1 - A[3, 3]) * (X_ss[2, 0] * A[3, 2] + B[3, 1] * U[1, 0] + B[3, 0] * U[0, 0])
188 #X_ss[3, 0] = 1 / (1 - A[3, 3]) / (1 - A[2, 2]) * B[2, 0] * U[0, 0] * A[3, 2] + B[3, 0] * U[0, 0] + B[3, 1] * U[1, 0]
189 X_ss[0, 0] = A[0, 2] * X_ss[2, 0] + B[0, 0] * U[0, 0]
190 X_ss[1, 0] = A[1, 2] * X_ss[2, 0] + A[1, 3] * X_ss[3, 0] + B[1, 0] * U[0, 0] + B[1, 1] * U[1, 0]
191
Austin Schuha3b42552015-11-27 16:30:12 -0800192 glog.debug('X_ss %s', str(X_ss))
Brian Silverman17f503e2015-08-02 18:17:18 -0700193
194 self.InitializeState()
195
196
197class ClawDeltaU(Claw):
198 def __init__(self, name="Claw"):
199 super(ClawDeltaU, self).__init__(name)
200 A_unaugmented = self.A
201 B_unaugmented = self.B
202 C_unaugmented = self.C
203
204 self.A = numpy.matrix([[0.0, 0.0, 0.0, 0.0, 0.0],
205 [0.0, 0.0, 0.0, 0.0, 0.0],
206 [0.0, 0.0, 0.0, 0.0, 0.0],
207 [0.0, 0.0, 0.0, 0.0, 0.0],
208 [0.0, 0.0, 0.0, 0.0, 1.0]])
209 self.A[0:4, 0:4] = A_unaugmented
210 self.A[0:4, 4] = B_unaugmented[0:4, 0]
211
212 self.B = numpy.matrix([[0.0, 0.0],
213 [0.0, 0.0],
214 [0.0, 0.0],
215 [0.0, 0.0],
216 [1.0, 0.0]])
217 self.B[0:4, 1] = B_unaugmented[0:4, 1]
218
219 self.C = numpy.concatenate((C_unaugmented, numpy.matrix([[0.0], [0.0]])),
220 axis=1)
221 self.D = numpy.matrix([[0.0, 0.0],
222 [0.0, 0.0]])
223
224 #self.PlaceControllerPoles([0.55, 0.35, 0.55, 0.35, 0.80])
225 self.Q = numpy.matrix([[(1.0 / (0.04 ** 2.0)), 0.0, 0.0, 0.0, 0.0],
226 [0.0, (1.0 / (0.01 ** 2)), 0.0, 0.0, 0.0],
227 [0.0, 0.0, 0.01, 0.0, 0.0],
228 [0.0, 0.0, 0.0, 0.08, 0.0],
229 [0.0, 0.0, 0.0, 0.0, (1.0 / (10.0 ** 2))]])
230
231 self.R = numpy.matrix([[0.000001, 0.0],
232 [0.0, 1.0 / (10.0 ** 2.0)]])
233 self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
234
235 self.K = numpy.matrix([[50.0, 0.0, 10.0, 0.0, 1.0],
236 [50.0, 0.0, 10.0, 0.0, 1.0]])
Brian Silverman17f503e2015-08-02 18:17:18 -0700237
Brian Silvermane18cf502015-11-28 23:04:43 +0000238 controllability = controls.ctrb(self.A, self.B)
239 glog.debug('Rank of augmented controllability matrix: %d',
240 numpy.linalg.matrix_rank(controllability))
Brian Silverman17f503e2015-08-02 18:17:18 -0700241
Austin Schuha3b42552015-11-27 16:30:12 -0800242 glog.debug('K')
243 glog.debug(str(self.K))
244 glog.debug('Placed controller poles are')
245 glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
246 glog.debug(str([numpy.abs(x) for x in
247 numpy.linalg.eig(self.A - self.B * self.K)[0]]))
Brian Silverman17f503e2015-08-02 18:17:18 -0700248
249 self.rpl = .05
250 self.ipl = 0.008
251 self.PlaceObserverPoles([self.rpl + 1j * self.ipl, 0.10, 0.09,
252 self.rpl - 1j * self.ipl, 0.90])
253 #print "A is"
254 #print self.A
255 #print "L is"
256 #print self.L
257 #print "C is"
258 #print self.C
259 #print "A - LC is"
260 #print self.A - self.L * self.C
261
262 #print "Placed observer poles are"
263 #print numpy.linalg.eig(self.A - self.L * self.C)[0]
264
265 self.U_max = numpy.matrix([[12.0], [12.0]])
266 self.U_min = numpy.matrix([[-12.0], [-12.0]])
267
268 self.InitializeState()
269
270def ScaleU(claw, U, K, error):
271 """Clips U as necessary.
272
273 Args:
274 claw: claw object containing moments of inertia and U limits.
275 U: Input matrix to clip as necessary.
276 """
277
278 bottom_u = U[0, 0]
279 top_u = U[1, 0]
280 position_error = error[0:2, 0]
281 velocity_error = error[2:, 0]
282
283 U_poly = polytope.HPolytope(
284 numpy.matrix([[1, 0],
285 [-1, 0],
286 [0, 1],
287 [0, -1]]),
288 numpy.matrix([[12],
289 [12],
290 [12],
291 [12]]))
292
293 if (bottom_u > claw.U_max[0, 0] or bottom_u < claw.U_min[0, 0] or
294 top_u > claw.U_max[0, 0] or top_u < claw.U_min[0, 0]):
295
296 position_K = K[:, 0:2]
297 velocity_K = K[:, 2:]
298
299 # H * U <= k
300 # U = UPos + UVel
301 # H * (UPos + UVel) <= k
302 # H * UPos <= k - H * UVel
303 #
304 # Now, we can do a coordinate transformation and say the following.
305 #
306 # UPos = position_K * position_error
307 # (H * position_K) * position_error <= k - H * UVel
308 #
309 # Add in the constraint that 0 <= t <= 1
310 # Now, there are 2 ways this can go. Either we have a region, or we don't
311 # have a region. If we have a region, then pick the largest t and go for it.
312 # If we don't have a region, we need to pick a good comprimise.
313
314 pos_poly = polytope.HPolytope(
315 U_poly.H * position_K,
316 U_poly.k - U_poly.H * velocity_K * velocity_error)
317
318 # The actual angle for the line we call 45.
319 angle_45 = numpy.matrix([[numpy.sqrt(3), 1]])
320 if claw.pos_limits and claw.hard_pos_limits and claw.X[0, 0] + claw.X[1, 0] > claw.pos_limits[1]:
321 angle_45 = numpy.matrix([[1, 1]])
322
323 P = position_error
324 L45 = numpy.multiply(numpy.matrix([[numpy.sign(P[1, 0]), -numpy.sign(P[0, 0])]]), angle_45)
325 if L45[0, 1] == 0:
326 L45[0, 1] = 1
327 if L45[0, 0] == 0:
328 L45[0, 0] = 1
329 w45 = numpy.matrix([[0]])
330
331 if numpy.abs(P[0, 0]) > numpy.abs(P[1, 0]):
332 LH = numpy.matrix([[0, 1]])
333 else:
334 LH = numpy.matrix([[1, 0]])
335 wh = LH * P
336 standard = numpy.concatenate((L45, LH))
337 W = numpy.concatenate((w45, wh))
338 intersection = numpy.linalg.inv(standard) * W
339 adjusted_pos_error_h, is_inside_h = polydrivetrain.DoCoerceGoal(pos_poly,
340 LH, wh, position_error)
341 adjusted_pos_error_45, is_inside_45 = polydrivetrain.DoCoerceGoal(pos_poly,
342 L45, w45, intersection)
343 if pos_poly.IsInside(intersection):
344 adjusted_pos_error = adjusted_pos_error_h
345 else:
346 if is_inside_h:
347 if numpy.linalg.norm(adjusted_pos_error_h) > numpy.linalg.norm(adjusted_pos_error_45):
348 adjusted_pos_error = adjusted_pos_error_h
349 else:
350 adjusted_pos_error = adjusted_pos_error_45
351 else:
352 adjusted_pos_error = adjusted_pos_error_45
353 #print adjusted_pos_error
354
355 #print "Actual power is ", velocity_K * velocity_error + position_K * adjusted_pos_error
356 return velocity_K * velocity_error + position_K * adjusted_pos_error
357
358 #U = Kpos * poserror + Kvel * velerror
359
360 #scalar = claw.U_max[0, 0] / max(numpy.abs(top_u), numpy.abs(bottom_u))
361
362 #top_u *= scalar
363 #bottom_u *= scalar
364
365 return numpy.matrix([[bottom_u], [top_u]])
366
Austin Schuha3b42552015-11-27 16:30:12 -0800367def run_test(claw, initial_X, goal, max_separation_error=0.01, show_graph=True, iterations=200):
Brian Silverman17f503e2015-08-02 18:17:18 -0700368 """Runs the claw plant on a given claw (claw) with an initial condition (initial_X) and goal (goal).
369
370 The tests themselves are not terribly sophisticated; I just test for
371 whether the goal has been reached and whether the separation goes
372 outside of the initial and goal values by more than max_separation_error.
373 Prints out something for a failure of either condition and returns
374 False if tests fail.
375 Args:
376 claw: claw object to use.
377 initial_X: starting state.
378 goal: goal state.
379 show_graph: Whether or not to display a graph showing the changing
380 states and voltages.
381 iterations: Number of timesteps to run the model for."""
382
383 claw.X = initial_X
384
385 # Various lists for graphing things.
386 t = []
387 x_bottom = []
388 x_top = []
389 u_bottom = []
390 u_top = []
391 x_separation = []
392
393 tests_passed = True
394
395 # Bounds which separation should not exceed.
396 lower_bound = (initial_X[1, 0] if initial_X[1, 0] < goal[1, 0]
397 else goal[1, 0]) - max_separation_error
398 upper_bound = (initial_X[1, 0] if initial_X[1, 0] > goal[1, 0]
399 else goal[1, 0]) + max_separation_error
400
401 for i in xrange(iterations):
402 U = claw.K * (goal - claw.X)
403 U = ScaleU(claw, U, claw.K, goal - claw.X)
404 claw.Update(U)
405
406 if claw.X[1, 0] > upper_bound or claw.X[1, 0] < lower_bound:
407 tests_passed = False
Austin Schuha3b42552015-11-27 16:30:12 -0800408 glog.info('Claw separation was %f', claw.X[1, 0])
409 glog.info("Should have been between", lower_bound, "and", upper_bound)
Brian Silverman17f503e2015-08-02 18:17:18 -0700410
411 if claw.hard_pos_limits and \
412 (claw.X[0, 0] > claw.hard_pos_limits[1] or
413 claw.X[0, 0] < claw.hard_pos_limits[0] or
414 claw.X[0, 0] + claw.X[1, 0] > claw.hard_pos_limits[1] or
415 claw.X[0, 0] + claw.X[1, 0] < claw.hard_pos_limits[0]):
416 tests_passed = False
Austin Schuha3b42552015-11-27 16:30:12 -0800417 glog.info('Claws at %f and %f', claw.X[0, 0], claw.X[0, 0] + claw.X[1, 0])
418 glog.info("Both should be in %s, definitely %s",
419 claw.pos_limits, claw.hard_pos_limits)
Brian Silverman17f503e2015-08-02 18:17:18 -0700420
421 t.append(i * claw.dt)
422 x_bottom.append(claw.X[0, 0] * 10.0)
423 x_top.append((claw.X[1, 0] + claw.X[0, 0]) * 10.0)
424 u_bottom.append(U[0, 0])
425 u_top.append(U[1, 0])
426 x_separation.append(claw.X[1, 0] * 10.0)
427
428 if show_graph:
429 pylab.plot(t, x_bottom, label='x bottom * 10')
430 pylab.plot(t, x_top, label='x top * 10')
431 pylab.plot(t, u_bottom, label='u bottom')
432 pylab.plot(t, u_top, label='u top')
433 pylab.plot(t, x_separation, label='separation * 10')
434 pylab.legend()
435 pylab.show()
436
437 # Test to make sure that we are near the goal.
438 if numpy.max(abs(claw.X - goal)) > 1e-4:
439 tests_passed = False
Austin Schuha3b42552015-11-27 16:30:12 -0800440 glog.error('X was %s Expected %s', str(claw.X), str(goal))
Brian Silverman17f503e2015-08-02 18:17:18 -0700441
442 return tests_passed
443
444def main(argv):
Austin Schuha3b42552015-11-27 16:30:12 -0800445 argv = FLAGS(argv)
446
Brian Silverman17f503e2015-08-02 18:17:18 -0700447 claw = Claw()
Austin Schuha3b42552015-11-27 16:30:12 -0800448 if FLAGS.plot:
449 # Test moving the claw with constant separation.
450 initial_X = numpy.matrix([[-1.0], [0.0], [0.0], [0.0]])
451 R = numpy.matrix([[1.0], [0.0], [0.0], [0.0]])
452 run_test(claw, initial_X, R)
Brian Silverman17f503e2015-08-02 18:17:18 -0700453
Austin Schuha3b42552015-11-27 16:30:12 -0800454 # Test just changing separation.
455 initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
456 R = numpy.matrix([[0.0], [1.0], [0.0], [0.0]])
457 run_test(claw, initial_X, R)
Brian Silverman17f503e2015-08-02 18:17:18 -0700458
Austin Schuha3b42552015-11-27 16:30:12 -0800459 # Test changing both separation and position at once.
460 initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
461 R = numpy.matrix([[1.0], [1.0], [0.0], [0.0]])
462 run_test(claw, initial_X, R)
Brian Silverman17f503e2015-08-02 18:17:18 -0700463
Austin Schuha3b42552015-11-27 16:30:12 -0800464 # Test a small separation error and a large position one.
465 initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
466 R = numpy.matrix([[2.0], [0.05], [0.0], [0.0]])
467 run_test(claw, initial_X, R)
Brian Silverman17f503e2015-08-02 18:17:18 -0700468
Austin Schuha3b42552015-11-27 16:30:12 -0800469 # Test a small separation error and a large position one.
470 initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
471 R = numpy.matrix([[-0.5], [1.0], [0.0], [0.0]])
472 run_test(claw, initial_X, R)
Brian Silverman17f503e2015-08-02 18:17:18 -0700473
Austin Schuha3b42552015-11-27 16:30:12 -0800474 # Test opening with the top claw at the limit.
475 initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
476 R = numpy.matrix([[-1.5], [1.5], [0.0], [0.0]])
477 claw.hard_pos_limits = (-1.6, 0.1)
478 claw.pos_limits = (-1.5, 0.0)
479 run_test(claw, initial_X, R)
480 claw.pos_limits = None
Brian Silverman17f503e2015-08-02 18:17:18 -0700481
Austin Schuha3b42552015-11-27 16:30:12 -0800482 # Test opening with the bottom claw at the limit.
483 initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]])
484 R = numpy.matrix([[0], [1.5], [0.0], [0.0]])
485 claw.hard_pos_limits = (-0.1, 1.6)
486 claw.pos_limits = (0.0, 1.6)
487 run_test(claw, initial_X, R)
488 claw.pos_limits = None
Brian Silverman17f503e2015-08-02 18:17:18 -0700489
490 # Write the generated constants out to a file.
491 if len(argv) != 3:
Austin Schuha3b42552015-11-27 16:30:12 -0800492 glog.fatal('Expected .h file name and .cc file name for the claw.')
Brian Silverman17f503e2015-08-02 18:17:18 -0700493 else:
Austin Schuhedc317c2015-11-08 14:07:42 -0800494 namespaces = ['y2014', 'control_loops', 'claw']
Austin Schuha3b42552015-11-27 16:30:12 -0800495 claw = Claw('Claw')
496 loop_writer = control_loop.ControlLoopWriter('Claw', [claw],
Austin Schuhedc317c2015-11-08 14:07:42 -0800497 namespaces=namespaces)
Austin Schuha3b42552015-11-27 16:30:12 -0800498 loop_writer.AddConstant(control_loop.Constant('kClawMomentOfInertiaRatio',
499 '%f', claw.J_top / claw.J_bottom))
500 loop_writer.AddConstant(control_loop.Constant('kDt', '%f',
Austin Schuh0e997732015-11-08 15:14:53 -0800501 claw.dt))
Austin Schuha3b42552015-11-27 16:30:12 -0800502 loop_writer.Write(argv[1], argv[2])
Brian Silverman17f503e2015-08-02 18:17:18 -0700503
504if __name__ == '__main__':
505 sys.exit(main(sys.argv))