blob: 5d0fe273d6f81c0b5c8421ac4d3d092f0c1b6268 [file] [log] [blame]
Milind Upadhyay225156b2022-02-25 22:42:12 -08001#include "y2022/control_loops/superstructure/collision_avoidance.h"
2
3#include <cmath>
4
5#include "absl/functional/bind_front.h"
6#include "glog/logging.h"
7
8namespace y2022 {
9namespace control_loops {
10namespace superstructure {
11
12CollisionAvoidance::CollisionAvoidance() {
13 clear_min_intake_front_goal();
14 clear_max_intake_front_goal();
15 clear_min_intake_back_goal();
16 clear_max_intake_back_goal();
17 clear_min_turret_goal();
18 clear_max_turret_goal();
19}
20
21bool CollisionAvoidance::IsCollided(const CollisionAvoidance::Status &status) {
22 // Checks if intake front is collided.
23 if (TurretCollided(status.intake_front_position, status.turret_position,
24 kMinCollisionZoneFrontTurret,
25 kMaxCollisionZoneFrontTurret)) {
26 return true;
27 }
28
29 // Checks if intake back is collided.
30 if (TurretCollided(status.intake_back_position, status.turret_position,
31 kMinCollisionZoneBackTurret,
32 kMaxCollisionZoneBackTurret)) {
33 return true;
34 }
35
36 return false;
37}
38
39std::pair<double, int> WrapTurretAngle(double turret_angle) {
40 double wrapped = std::remainder(turret_angle - M_PI, 2 * M_PI) + M_PI;
41 int wraps =
42 static_cast<int>(std::round((turret_angle - wrapped) / (2 * M_PI)));
43 return {wrapped, wraps};
44}
45
46double UnwrapTurretAngle(double wrapped, int wraps) {
47 return wrapped + 2.0 * M_PI * wraps;
48}
49
50bool CollisionAvoidance::TurretCollided(double intake_position,
51 double turret_position,
52 double min_turret_collision_position,
53 double max_turret_collision_position) {
54 const auto turret_position_wrapped_pair = WrapTurretAngle(turret_position);
55 const double turret_position_wrapped = turret_position_wrapped_pair.first;
56
57 // Checks if turret is in the collision area.
58 if (turret_position_wrapped >= min_turret_collision_position &&
59 turret_position_wrapped <= max_turret_collision_position) {
60 // Reterns true if the intake is raised.
61 if (intake_position <= kCollisionZoneIntake) {
62 return true;
63 }
64 } else {
65 return false;
66 }
67 return false;
68}
69
70void CollisionAvoidance::UpdateGoal(const CollisionAvoidance::Status &status,
71 const Goal *unsafe_goal) {
72 // Start with our constraints being wide open.
73 clear_max_turret_goal();
74 clear_min_turret_goal();
75 clear_max_intake_front_goal();
76 clear_min_intake_front_goal();
77 clear_max_intake_back_goal();
78 clear_min_intake_back_goal();
79
80 const double intake_front_position = status.intake_front_position;
81 const double intake_back_position = status.intake_back_position;
82 const double turret_position = status.turret_position;
83
84 const double turret_goal =
85 (unsafe_goal != nullptr && unsafe_goal->turret() != nullptr
86 ? unsafe_goal->turret()->unsafe_goal()
87 : std::numeric_limits<double>::quiet_NaN());
88
89 // Calculating the avoidance with either intake, and when the turret is
90 // wrapped.
91
92 CalculateAvoidance(true, intake_front_position, turret_goal,
93 kMinCollisionZoneFrontTurret, kMaxCollisionZoneFrontTurret,
94 turret_position);
95 CalculateAvoidance(false, intake_back_position, turret_goal,
96 kMinCollisionZoneBackTurret, kMaxCollisionZoneBackTurret,
97 turret_position);
98}
99
100void CollisionAvoidance::CalculateAvoidance(bool intake_front,
101 double intake_position,
102 double turret_goal,
103 double min_turret_collision_goal,
104 double max_turret_collision_goal,
105 double turret_position) {
106 auto [turret_position_wrapped, turret_position_wraps] =
107 WrapTurretAngle(turret_position);
108
109 // If the turret goal is in a collison zone or moving through one, limit
110 // intake.
111 const bool turret_pos_unsafe =
112 (turret_position_wrapped >= min_turret_collision_goal &&
113 turret_position_wrapped <= max_turret_collision_goal);
114
115 const bool turret_moving_forward = (turret_goal > turret_position);
116
117 // To figure out if we are moving past an intake, find the unwrapped min/max
118 // angles closest to the turret position on the journey.
119 int bounds_wraps = turret_position_wraps;
120 double min_turret_collision_goal_unwrapped =
121 UnwrapTurretAngle(min_turret_collision_goal, bounds_wraps);
122 if (turret_moving_forward &&
123 min_turret_collision_goal_unwrapped < turret_position) {
124 bounds_wraps++;
125 } else if (!turret_moving_forward &&
126 min_turret_collision_goal_unwrapped > turret_position) {
127 bounds_wraps--;
128 }
129 min_turret_collision_goal_unwrapped =
130 UnwrapTurretAngle(min_turret_collision_goal, bounds_wraps);
131 const double max_turret_collision_goal_unwrapped =
132 UnwrapTurretAngle(max_turret_collision_goal, bounds_wraps);
133
134 // Check if the closest unwrapped angles are going to be passed
135 const bool turret_moving_past_intake =
136 ((turret_moving_forward &&
137 (turret_position <= max_turret_collision_goal_unwrapped &&
138 turret_goal >= min_turret_collision_goal_unwrapped)) ||
139 (!turret_moving_forward &&
140 (turret_position >= min_turret_collision_goal_unwrapped &&
141 turret_goal <= max_turret_collision_goal_unwrapped)));
142
143 if (turret_pos_unsafe || turret_moving_past_intake) {
144 // If the turret is unsafe, limit the intake
145 if (intake_front) {
146 update_min_intake_front_goal(kCollisionZoneIntake + kEpsIntake);
147 } else {
148 update_min_intake_back_goal(kCollisionZoneIntake + kEpsIntake);
149 }
150
151 // If the intake is in the way, limit the turret until moved. Otherwise,
152 // let'errip!
153 if (!turret_pos_unsafe && (intake_position <= kCollisionZoneIntake)) {
154 if (turret_position < min_turret_collision_goal_unwrapped) {
155 update_max_turret_goal(min_turret_collision_goal_unwrapped -
156 kEpsTurret);
157 } else {
158 update_min_turret_goal(max_turret_collision_goal_unwrapped +
159 kEpsTurret);
160 }
161 }
162 }
163}
164
165} // namespace superstructure
166} // namespace control_loops
167} // namespace y2022