Parker Schuh | 2a1447c | 2019-02-17 00:25:29 -0800 | [diff] [blame] | 1 | #include "y2019/vision/target_finder.h" |
| 2 | |
| 3 | #include "aos/vision/blob/hierarchical_contour_merge.h" |
| 4 | |
| 5 | using namespace aos::vision; |
| 6 | |
| 7 | namespace y2019 { |
| 8 | namespace vision { |
| 9 | |
| 10 | TargetFinder::TargetFinder() { target_template_ = Target::MakeTemplate(); } |
| 11 | |
| 12 | aos::vision::RangeImage TargetFinder::Threshold(aos::vision::ImagePtr image) { |
| 13 | const uint8_t threshold_value = GetThresholdValue(); |
| 14 | return aos::vision::DoThreshold(image, [&](aos::vision::PixelRef &px) { |
| 15 | if (px.g > threshold_value && px.b > threshold_value && |
| 16 | px.r > threshold_value) { |
| 17 | return true; |
| 18 | } |
| 19 | return false; |
| 20 | }); |
| 21 | } |
| 22 | |
| 23 | // Filter blobs on size. |
| 24 | void TargetFinder::PreFilter(BlobList *imgs) { |
| 25 | imgs->erase( |
| 26 | std::remove_if(imgs->begin(), imgs->end(), |
| 27 | [](RangeImage &img) { |
| 28 | // We can drop images with a small number of |
| 29 | // pixels, but images |
| 30 | // must be over 20px or the math will have issues. |
| 31 | return (img.npixels() < 100 || img.height() < 25); |
| 32 | }), |
| 33 | imgs->end()); |
| 34 | } |
| 35 | |
| 36 | // TODO: Try hierarchical merge for this. |
| 37 | // Convert blobs into polygons. |
| 38 | std::vector<aos::vision::Segment<2>> TargetFinder::FillPolygon( |
| 39 | const RangeImage &blob, bool verbose) { |
| 40 | if (verbose) printf("Process Polygon.\n"); |
| 41 | alloc_.reset(); |
| 42 | auto *st = RangeImgToContour(blob, &alloc_); |
| 43 | |
| 44 | struct Pt { |
| 45 | float x; |
| 46 | float y; |
| 47 | }; |
| 48 | std::vector<Pt> pts; |
| 49 | |
| 50 | // Collect all slopes from the contour. |
| 51 | auto opt = st->pt; |
| 52 | for (auto *node = st; node->next != st;) { |
| 53 | node = node->next; |
| 54 | |
| 55 | auto npt = node->pt; |
| 56 | |
| 57 | pts.push_back( |
| 58 | {static_cast<float>(npt.x - opt.x), static_cast<float>(npt.y - opt.y)}); |
| 59 | |
| 60 | opt = npt; |
| 61 | } |
| 62 | |
| 63 | const int n = pts.size(); |
| 64 | auto get_pt = [&](int i) { return pts[(i + n * 2) % n]; }; |
| 65 | |
| 66 | std::vector<Pt> pts_new = pts; |
| 67 | auto run_box_filter = [&](int window_size) { |
| 68 | for (size_t i = 0; i < pts.size(); ++i) { |
| 69 | Pt a{0.0, 0.0}; |
| 70 | for (int j = -window_size; j <= window_size; ++j) { |
| 71 | Pt p = get_pt(j + i); |
| 72 | a.x += p.x; |
| 73 | a.y += p.y; |
| 74 | } |
| 75 | a.x /= (window_size * 2 + 1); |
| 76 | a.y /= (window_size * 2 + 1); |
| 77 | |
| 78 | float scale = 1.0 + (i / float(pts.size() * 10)); |
| 79 | a.x *= scale; |
| 80 | a.y *= scale; |
| 81 | pts_new[i] = a; |
| 82 | } |
| 83 | pts = pts_new; |
| 84 | }; |
| 85 | // Three box filter makith a guassian? |
| 86 | // Run gaussian filter over the slopes. |
| 87 | run_box_filter(2); |
| 88 | run_box_filter(2); |
| 89 | run_box_filter(2); |
| 90 | |
| 91 | // Heuristic which says if a particular slope is part of a corner. |
| 92 | auto is_corner = [&](size_t i) { |
| 93 | Pt a = get_pt(i - 3); |
| 94 | Pt b = get_pt(i + 3); |
| 95 | double dx = (a.x - b.x); |
| 96 | double dy = (a.y - b.y); |
| 97 | return dx * dx + dy * dy > 0.25; |
| 98 | }; |
| 99 | |
| 100 | bool prev_v = is_corner(-1); |
| 101 | |
| 102 | // Find all centers of corners. |
| 103 | // Because they round, multiple points may be a corner. |
| 104 | std::vector<size_t> edges; |
| 105 | size_t kBad = pts.size() + 10; |
| 106 | size_t prev_up = kBad; |
| 107 | size_t wrapped_n = prev_up; |
| 108 | |
| 109 | for (size_t i = 0; i < pts.size(); ++i) { |
| 110 | bool v = is_corner(i); |
| 111 | if (prev_v && !v) { |
| 112 | if (prev_up == kBad) { |
| 113 | wrapped_n = i; |
| 114 | } else { |
| 115 | edges.push_back((prev_up + i - 1) / 2); |
| 116 | } |
| 117 | } |
| 118 | if (v && !prev_v) { |
| 119 | prev_up = i; |
| 120 | } |
| 121 | prev_v = v; |
| 122 | } |
| 123 | |
| 124 | if (wrapped_n != kBad) { |
| 125 | edges.push_back(((prev_up + pts.size() + wrapped_n - 1) / 2) % pts.size()); |
| 126 | } |
| 127 | |
| 128 | if (verbose) printf("Edge Count (%zu).\n", edges.size()); |
| 129 | |
| 130 | // Get all CountourNodes from the contour. |
| 131 | using aos::vision::PixelRef; |
| 132 | std::vector<ContourNode *> segments; |
| 133 | { |
| 134 | std::vector<ContourNode *> segments_all; |
| 135 | |
| 136 | for (ContourNode *node = st; node->next != st;) { |
| 137 | node = node->next; |
| 138 | segments_all.push_back(node); |
| 139 | } |
| 140 | for (size_t i : edges) { |
| 141 | segments.push_back(segments_all[i]); |
| 142 | } |
| 143 | } |
| 144 | if (verbose) printf("Segment Count (%zu).\n", segments.size()); |
| 145 | |
| 146 | // Run best-fits over each line segment. |
| 147 | std::vector<Segment<2>> seg_list; |
| 148 | if (segments.size() == 4) { |
| 149 | for (size_t i = 0; i < segments.size(); ++i) { |
| 150 | auto *ed = segments[(i + 1) % segments.size()]; |
| 151 | auto *st = segments[i]; |
| 152 | float mx = 0.0; |
| 153 | float my = 0.0; |
| 154 | int n = 0; |
| 155 | for (auto *node = st; node != ed; node = node->next) { |
| 156 | mx += node->pt.x; |
| 157 | my += node->pt.y; |
| 158 | ++n; |
| 159 | // (x - [x] / N) ** 2 = [x * x] - 2 * [x] * [x] / N + [x] * [x] / N / N; |
| 160 | } |
| 161 | mx /= n; |
| 162 | my /= n; |
| 163 | |
| 164 | float xx = 0.0; |
| 165 | float xy = 0.0; |
| 166 | float yy = 0.0; |
| 167 | for (auto *node = st; node != ed; node = node->next) { |
| 168 | float x = node->pt.x - mx; |
| 169 | float y = node->pt.y - my; |
| 170 | xx += x * x; |
| 171 | xy += x * y; |
| 172 | yy += y * y; |
| 173 | } |
| 174 | |
| 175 | // TODO: Extract common to hierarchical merge. |
| 176 | float neg_b_over_2 = (xx + yy) / 2.0; |
| 177 | float c = (xx * yy - xy * xy); |
| 178 | |
| 179 | float sqr = sqrt(neg_b_over_2 * neg_b_over_2 - c); |
| 180 | |
| 181 | { |
| 182 | float lam = neg_b_over_2 + sqr; |
| 183 | float x = xy; |
| 184 | float y = lam - xx; |
| 185 | |
| 186 | float norm = sqrt(x * x + y * y); |
| 187 | x /= norm; |
| 188 | y /= norm; |
| 189 | |
| 190 | seg_list.push_back( |
| 191 | Segment<2>(Vector<2>(mx, my), Vector<2>(mx + x, my + y))); |
| 192 | } |
| 193 | |
| 194 | /* Characteristic polynomial |
| 195 | 1 lam^2 - (xx + yy) lam + (xx * yy - xy * xy) = 0 |
| 196 | |
| 197 | [a b] |
| 198 | [c d] |
| 199 | |
| 200 | // covariance matrix. |
| 201 | [xx xy] [nx] |
| 202 | [xy yy] [ny] |
| 203 | */ |
| 204 | } |
| 205 | } |
| 206 | if (verbose) printf("Poly Count (%zu).\n", seg_list.size()); |
| 207 | return seg_list; |
| 208 | } |
| 209 | |
| 210 | // Convert segments into target components (left or right) |
| 211 | std::vector<TargetComponent> TargetFinder::FillTargetComponentList( |
| 212 | const std::vector<std::vector<Segment<2>>> &seg_list) { |
| 213 | std::vector<TargetComponent> list; |
| 214 | TargetComponent new_target; |
| 215 | for (const auto &poly : seg_list) { |
| 216 | // Reject missized pollygons for now. Maybe rectify them here in the future; |
| 217 | if (poly.size() != 4) continue; |
| 218 | std::vector<Vector<2>> corners; |
| 219 | for (size_t i = 0; i < 4; ++i) { |
| 220 | corners.push_back(poly[i].Intersect(poly[(i + 1) % 4])); |
| 221 | } |
| 222 | |
| 223 | // Select the closest two points. Short side of the rectangle. |
| 224 | double min_dist = -1; |
| 225 | std::pair<size_t, size_t> closest; |
| 226 | for (size_t i = 0; i < 4; ++i) { |
| 227 | size_t next = (i + 1) % 4; |
| 228 | double nd = corners[i].SquaredDistanceTo(corners[next]); |
| 229 | if (min_dist == -1 || nd < min_dist) { |
| 230 | min_dist = nd; |
| 231 | closest.first = i; |
| 232 | closest.second = next; |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | // Verify our top is above the bottom. |
| 237 | size_t bot_index = closest.first; |
| 238 | size_t top_index = (closest.first + 2) % 4; |
| 239 | if (corners[top_index].y() < corners[bot_index].y()) { |
| 240 | closest.first = top_index; |
| 241 | closest.second = (top_index + 1) % 4; |
| 242 | } |
| 243 | |
| 244 | // Find the major axis. |
| 245 | size_t far_first = (closest.first + 2) % 4; |
| 246 | size_t far_second = (closest.second + 2) % 4; |
| 247 | Segment<2> major_axis( |
| 248 | (corners[closest.first] + corners[closest.second]) * 0.5, |
| 249 | (corners[far_first] + corners[far_second]) * 0.5); |
| 250 | if (major_axis.AsVector().AngleToZero() > M_PI / 180.0 * 120.0 || |
| 251 | major_axis.AsVector().AngleToZero() < M_PI / 180.0 * 60.0) { |
| 252 | // Target is angled way too much, drop it. |
| 253 | continue; |
| 254 | } |
| 255 | |
| 256 | // organize the top points. |
| 257 | Vector<2> topA = corners[closest.first] - major_axis.B(); |
| 258 | new_target.major_axis = major_axis; |
| 259 | if (major_axis.AsVector().AngleToZero() > M_PI / 2.0) { |
| 260 | // We have a left target since we are leaning positive. |
| 261 | new_target.is_right = false; |
| 262 | if (topA.AngleTo(major_axis.AsVector()) > 0.0) { |
| 263 | // And our A point is left of the major axis. |
| 264 | new_target.inside = corners[closest.second]; |
| 265 | new_target.top = corners[closest.first]; |
| 266 | } else { |
| 267 | // our A point is to the right of the major axis. |
| 268 | new_target.inside = corners[closest.first]; |
| 269 | new_target.top = corners[closest.second]; |
| 270 | } |
| 271 | } else { |
| 272 | // We have a right target since we are leaning negative. |
| 273 | new_target.is_right = true; |
| 274 | if (topA.AngleTo(major_axis.AsVector()) > 0.0) { |
| 275 | // And our A point is left of the major axis. |
| 276 | new_target.inside = corners[closest.first]; |
| 277 | new_target.top = corners[closest.second]; |
| 278 | } else { |
| 279 | // our A point is to the right of the major axis. |
| 280 | new_target.inside = corners[closest.second]; |
| 281 | new_target.top = corners[closest.first]; |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | // organize the top points. |
| 286 | Vector<2> botA = corners[far_first] - major_axis.A(); |
| 287 | if (major_axis.AsVector().AngleToZero() > M_PI / 2.0) { |
| 288 | // We have a right target since we are leaning positive. |
| 289 | if (botA.AngleTo(major_axis.AsVector()) < M_PI) { |
| 290 | // And our A point is left of the major axis. |
| 291 | new_target.outside = corners[far_second]; |
| 292 | new_target.bottom = corners[far_first]; |
| 293 | } else { |
| 294 | // our A point is to the right of the major axis. |
| 295 | new_target.outside = corners[far_first]; |
| 296 | new_target.bottom = corners[far_second]; |
| 297 | } |
| 298 | } else { |
| 299 | // We have a left target since we are leaning negative. |
| 300 | if (botA.AngleTo(major_axis.AsVector()) < M_PI) { |
| 301 | // And our A point is left of the major axis. |
| 302 | new_target.outside = corners[far_first]; |
| 303 | new_target.bottom = corners[far_second]; |
| 304 | } else { |
| 305 | // our A point is to the right of the major axis. |
| 306 | new_target.outside = corners[far_second]; |
| 307 | new_target.bottom = corners[far_first]; |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | // This piece of the target should be ready now. |
| 312 | list.emplace_back(new_target); |
| 313 | } |
| 314 | |
| 315 | return list; |
| 316 | } |
| 317 | |
| 318 | // Match components into targets. |
| 319 | std::vector<Target> TargetFinder::FindTargetsFromComponents( |
| 320 | const std::vector<TargetComponent> component_list, bool verbose) { |
| 321 | std::vector<Target> target_list; |
| 322 | using namespace aos::vision; |
| 323 | if (component_list.size() < 2) { |
| 324 | // We don't enough parts for a target. |
| 325 | return target_list; |
| 326 | } |
| 327 | |
| 328 | for (size_t i = 0; i < component_list.size(); i++) { |
| 329 | const TargetComponent &a = component_list[i]; |
| 330 | for (size_t j = 0; j < i; j++) { |
| 331 | bool target_valid = false; |
| 332 | Target new_target; |
| 333 | const TargetComponent &b = component_list[j]; |
| 334 | |
| 335 | // Reject targets that are too far off vertically. |
| 336 | Vector<2> a_center = a.major_axis.Center(); |
| 337 | if (a_center.y() > b.bottom.y() || a_center.y() < b.top.y()) { |
| 338 | continue; |
| 339 | } |
| 340 | Vector<2> b_center = b.major_axis.Center(); |
| 341 | if (b_center.y() > a.bottom.y() || b_center.y() < a.top.y()) { |
| 342 | continue; |
| 343 | } |
| 344 | |
| 345 | if (a.is_right && !b.is_right) { |
| 346 | if (a.top.x() > b.top.x()) { |
| 347 | new_target.right = a; |
| 348 | new_target.left = b; |
| 349 | target_valid = true; |
| 350 | } |
| 351 | } else if (!a.is_right && b.is_right) { |
| 352 | if (b.top.x() > a.top.x()) { |
| 353 | new_target.right = b; |
| 354 | new_target.left = a; |
| 355 | target_valid = true; |
| 356 | } |
| 357 | } |
| 358 | if (target_valid) { |
| 359 | target_list.emplace_back(new_target); |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | if (verbose) printf("Possible Target: %zu.\n", target_list.size()); |
| 364 | return target_list; |
| 365 | } |
| 366 | |
| 367 | std::vector<IntermediateResult> TargetFinder::FilterResults( |
| 368 | const std::vector<IntermediateResult> &results) { |
| 369 | std::vector<IntermediateResult> filtered; |
| 370 | for (const IntermediateResult &res : results) { |
| 371 | if (res.solver_error < 75.0) { |
| 372 | filtered.emplace_back(res); |
| 373 | } |
| 374 | } |
| 375 | return filtered; |
| 376 | } |
| 377 | |
| 378 | } // namespace vision |
| 379 | } // namespace y2019 |