blob: f4cfea6c44ec329ccb141a3de730e6ff16a9ee42 [file] [log] [blame]
James Kuszmaulf5eb4682023-09-22 17:16:59 -07001#ifndef AOS_FLATBUFFERS_STATIC_VECTOR_H_
2#define AOS_FLATBUFFERS_STATIC_VECTOR_H_
3#include <span>
4
5#include "flatbuffers/base.h"
6#include "glog/logging.h"
7
8#include "aos/containers/inlined_vector.h"
9#include "aos/containers/sized_array.h"
10#include "aos/flatbuffers/base.h"
11
12namespace aos::fbs {
13
14namespace internal {
15// Helper class for managing how we specialize the Vector object for different
16// contained types.
17// Users of the Vector class should never need to care about this.
18// Template arguments:
19// T: The type that the vector stores.
20// kInline: Whether the type in question is stored inline or not.
21// Enable: Used for SFINAE around struct values; can be ignored.
22// The struct provides the following types:
23// Type: The type of the data that will be stored inline in the vector.
24// ObjectType: The type of the actual data (only used for non-inline objects).
25// FlatbufferType: The type used by flatbuffers::Vector to store this type.
26// ConstFlatbufferType: The type used by a const flatbuffers::Vector to store
27// this type.
28// kDataAlign: Alignment required by the stored type.
29// kDataSize: Nominal size required by each non-inline data member. This is
30// what will be initially allocated; once created, individual members may
31// grow to accommodate dynamically lengthed vectors.
32template <typename T, bool kInline, class Enable = void>
33struct InlineWrapper;
34} // namespace internal
35
36// This Vector class provides a mutable, resizeable, flatbuffer vector.
37//
38// Upon creation, the Vector will start with enough space allocated for
39// kStaticLength elements, and must be provided with a memory buffer that
40// is large enough to serialize all the kStaticLength members (kStaticLength may
41// be zero).
42//
43// Once created, the Vector may be grown using calls to reserve().
44// This will result in the Vector attempting to allocate memory via its
45// parent object; such calls may fail if there is no space available in the
46// allocator.
47//
48// Note that if you are using the Vector class in a realtime context (and thus
49// must avoid dynamic memory allocations) you must only be using a Vector of
50// inline data (i.e., scalars, enums, or structs). Flatbuffer tables and strings
51// require overhead to manage and so require some form of dynamic memory
52// allocation. If we discover a strong use-case for such things, then we may
53// provide some interface that allows managing said metadata on the stack or
54// in another realtime-safe manner.
55//
56// Template arguments:
57// T: Type contained by the vector; either a scalar/struct/enum type or a
58// static flatbuffer type of some sort (a String or an implementation of
59// aos::fbs::Table).
60// kStaticLength: Number of elements to statically allocate memory for.
61// May be zero.
62// kInline: Whether the type T will be stored inline in the vector.
63// kForceAlign: Alignment to force for the start of the vector (e.g., for
64// byte arrays it may be desirable to have the entire array aligned).
65// kNullTerminate: Whether to reserve an extra byte past the end of
66// the inline data for null termination. Not included in kStaticLength,
67// so if e.g. you want to store the string "abc" then kStaticLength can
68// be 3 and kNullTerminate can be true and the vector data will take
69// up 4 bytes of memory.
70//
71// Vector buffer memory layout:
72// * Requirements:
73// * Minimum alignment of 4 bytes (for element count).
74// * The start of the vector data must be aligned to either
75// alignof(InlineType) or a user-specified number.
76// * The element count for the vector must immediately precede the vector
77// data (and so may itself not be aligned to alignof(InlineType)).
78// * For non-inlined types, the individual types must be aligned to
79// their own alignment.
80// * In order to accommodate this, the vector buffer as a whole must
81// generally be aligned to the greatest of the above alignments. There
82// are two reasonable ways one could do this:
83// * Require that the 4th byte of the buffer provided by aligned to
84// the maximum alignment of its contents.
85// * Require that the buffer itself by aligned, and provide padding
86// ourselves. The Vector would then have to expose its own offset
87// because it would not start at the start of the buffer.
88// The former requires that the wrapping code understand the internals
89// of how vectors work; the latter generates extra padding and adds
90// extra logic around handling non-zero offsets.
91// To maintain general simplicity, we will use the second condition and eat
92// the cost of the potential extra few bytes of padding.
93// * The layout of the buffer will thus be:
94// [padding; element_count; inline_data; padding; offset_data]
95// The first padding will be of size max(0, kAlign - 4).
96// The element_count is of size 4.
97// The inline_data is of size sizeof(InlineType) * kStaticLength.
98// The second padding is of size
99// (kAlign - ((sizeof(InlineType) * kStaticLength) % kAlign)).
100// The remaining data is only present if kInline is false.
101// The offset data is of size T::kSize * kStaticLength. T::kSize % T::kAlign
102// must be zero.
103// Note that no padding is required on the end because T::kAlign will always
104// end up being equal to the alignment (this can only be violated if
105// kForceAlign is used, but we do not allow that).
James Kuszmaul1c9693f2023-12-08 09:45:26 -0800106// The Vector class leaves any padding uninitialized. Until and unless we
107// determine that it is a performance issue, it is the responsibility of the
108// parent of this object to zero-initialize the memory.
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700109template <typename T, size_t kStaticLength, bool kInline,
110 size_t kForceAlign = 0, bool kNullTerminate = false>
111class Vector : public ResizeableObject {
112 public:
113 static_assert(kInline || !kNullTerminate,
114 "It does not make sense to null-terminate vectors of objects.");
115 // Type stored inline in the serialized vector (offsets for tables/strings; T
116 // otherwise).
117 using InlineType = typename internal::InlineWrapper<T, kInline>::Type;
118 // OUt-of-line type for out-of-line T.
119 using ObjectType = typename internal::InlineWrapper<T, kInline>::ObjectType;
120 // Type used as the template parameter to flatbuffers::Vector<>.
121 using FlatbufferType =
122 typename internal::InlineWrapper<T, kInline>::FlatbufferType;
123 using ConstFlatbufferType =
124 typename internal::InlineWrapper<T, kInline>::ConstFlatbufferType;
125 // flatbuffers::Vector type that corresponds to this Vector.
126 typedef flatbuffers::Vector<FlatbufferType> Flatbuffer;
127 typedef const flatbuffers::Vector<ConstFlatbufferType> ConstFlatbuffer;
128 // Alignment of the inline data.
129 static constexpr size_t kInlineAlign =
130 std::max(kForceAlign, alignof(InlineType));
131 // Type used for serializing the length of the vector.
132 typedef uint32_t LengthType;
133 // Overall alignment of this type, and required alignment of the buffer that
134 // must be provided to the Vector.
135 static constexpr size_t kAlign =
136 std::max({alignof(LengthType), kInlineAlign,
137 internal::InlineWrapper<T, kInline>::kDataAlign});
138 // Padding inserted prior to the length element of the vector (to manage
139 // alignment of the data properly; see class comment)
140 static constexpr size_t kPadding1 =
141 std::max<size_t>(0, kAlign - sizeof(LengthType));
142 // Size of the vector length field.
143 static constexpr size_t kLengthSize = sizeof(LengthType);
144 // Size of all the inline vector data, including null termination (prior to
145 // any dynamic increases in size).
146 static constexpr size_t kInlineSize =
147 sizeof(InlineType) * (kStaticLength + (kNullTerminate ? 1 : 0));
148 // Per-element size of any out-of-line data.
149 static constexpr size_t kDataElementSize =
150 internal::InlineWrapper<T, kInline>::kDataSize;
151 // Padding between the inline data and any out-of-line data, to manage
152 // mismatches in alignment between the two.
153 static constexpr size_t kPadding2 = kAlign - (kInlineSize % kAlign);
154 // Total statically allocated space for any out-of-line data ("offset data")
155 // (prior to any dynamic increases in size).
156 static constexpr size_t kOffsetOffsetDataSize =
157 kInline ? 0 : (kStaticLength * kDataElementSize);
158 // Total nominal size of the Vector.
159 static constexpr size_t kSize =
160 kPadding1 + kLengthSize + kInlineSize + kPadding2 + kOffsetOffsetDataSize;
161 // Offset from the start of the provided buffer to where the actual start of
162 // the vector is.
163 static constexpr size_t kOffset = kPadding1;
164 // Constructors; the provided buffer must be aligned to kAlign and be kSize in
165 // length. parent must be non-null.
166 Vector(std::span<uint8_t> buffer, ResizeableObject *parent)
167 : ResizeableObject(buffer, parent) {
168 CHECK_EQ(0u, reinterpret_cast<size_t>(buffer.data()) % kAlign);
169 CHECK_EQ(kSize, buffer.size());
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700170 SetLength(0u);
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700171 if (!kInline) {
172 // Initialize the offsets for any sub-tables. These are used to track
173 // where each table will get serialized in memory as memory gets
174 // resized/moved around.
175 for (size_t index = 0; index < kStaticLength; ++index) {
176 object_absolute_offsets_.emplace_back(kPadding1 + kLengthSize +
177 kInlineSize + kPadding2 +
178 index * kDataElementSize);
179 }
180 }
181 }
182 Vector(const Vector &) = delete;
183 Vector &operator=(const Vector &) = delete;
184 virtual ~Vector() {}
185 // Current allocated length of this vector.
186 // Does not include null termination.
187 size_t capacity() const { return allocated_length_; }
188 // Current length of the vector.
189 // Does not include null termination.
190 size_t size() const { return length_; }
191
192 // Appends an element to the Vector. Used when kInline is false. Returns
193 // nullptr if the append failed due to insufficient capacity. If you need to
194 // increase the capacity() of the vector, call reserve().
195 [[nodiscard]] T *emplace_back();
196 // Appends an element to the Vector. Used when kInline is true. Returns false
197 // if there is insufficient capacity for a new element.
198 [[nodiscard]] bool emplace_back(T element) {
199 static_assert(kInline);
200 return AddInlineElement(element);
201 }
202
203 // Adjusts the allocated size of the vector (does not affect the actual
204 // current length as returned by size()). Returns true on success, and false
205 // if the allocation failed for some reason.
206 // Note that reductions in size will not currently result in the allocated
207 // size actually changing.
208 [[nodiscard]] bool reserve(size_t new_length) {
209 if (new_length > allocated_length_) {
210 const size_t new_elements = new_length - allocated_length_;
211 // First, we must add space for our new inline elements.
212 if (!InsertBytes(
213 inline_data() + allocated_length_ + (kNullTerminate ? 1 : 0),
214 new_elements * sizeof(InlineType), SetZero::kYes)) {
215 return false;
216 }
217 if (!kInline) {
218 // For non-inline objects, create the space required for all the new
219 // object data.
220 const size_t insertion_point = buffer_.size();
221 if (!InsertBytes(buffer_.data() + insertion_point,
222 new_elements * kDataElementSize, SetZero::kYes)) {
223 return false;
224 }
225 for (size_t index = 0; index < new_elements; ++index) {
226 // Note that the already-allocated data may be arbitrarily-sized, so
227 // we cannot use the same static calculation that we do in the
228 // constructor.
229 object_absolute_offsets_.emplace_back(insertion_point +
230 index * kDataElementSize);
231 }
232 objects_.reserve(new_length);
233 }
234 allocated_length_ = new_length;
235 }
236 return true;
237 }
238
239 // Accessors for using the Vector as a flatbuffers::Vector.
240 // Note that these pointers will be unstable if any memory allocations occur
241 // that cause memory to get shifted around.
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700242 ConstFlatbuffer *AsFlatbufferVector() const {
243 return reinterpret_cast<const Flatbuffer *>(vector_buffer().data());
244 }
245
246 // Copies the contents of the provided vector into this; returns false on
247 // failure (e.g., if the provided vector is too long for the amount of space
248 // we can allocate through reserve()).
James Kuszmaul710883b2023-12-14 14:34:48 -0800249 // This is a deep copy, and will call FromFlatbuffer on any constituent
250 // objects.
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700251 [[nodiscard]] bool FromFlatbuffer(ConstFlatbuffer *vector);
252
253 // Returns the element at the provided index. index must be less than size().
254 const T &at(size_t index) const {
255 CHECK_LT(index, length_);
256 return unsafe_at(index);
257 }
258
259 // Same as at(), except that bounds checks are only performed in non-optimized
260 // builds.
261 // TODO(james): The GetInlineElement() call itself does some bounds-checking;
262 // consider down-grading that.
263 const T &unsafe_at(size_t index) const {
264 DCHECK_LT(index, length_);
265 if (kInline) {
266 // This reinterpret_cast is extremely wrong if T != InlineType (this is
267 // fine because we only do this if kInline is true).
268 // TODO(james): Get the templating improved so that we can get away with
269 // specializing at() instead of using if statements. Resolving this will
270 // also allow deduplicating the Resize() calls.
271 // This specialization is difficult because you cannot partially
272 // specialize a templated class method (online things seem to suggest e.g.
273 // using a struct as the template parameter rather than having separate
274 // parameters).
275 return reinterpret_cast<const T &>(GetInlineElement(index));
276 } else {
277 return objects_[index].t;
278 }
279 }
280
281 // Returns a mutable pointer to the element at the provided index. index must
282 // be less than size().
283 T &at(size_t index) {
284 CHECK_LT(index, length_);
285 return unsafe_at(index);
286 }
287
288 // Same as at(), except that bounds checks are only performed in non-optimized
289 // builds.
290 // TODO(james): The GetInlineElement() call itself does some bounds-checking;
291 // consider down-grading that.
292 T &unsafe_at(size_t index) {
293 DCHECK_LT(index, length_);
294 if (kInline) {
295 // This reinterpret_cast is extremely wrong if T != InlineType (this is
296 // fine because we only do this if kInline is true).
297 // TODO(james): Get the templating improved so that we can get away with
298 // specializing at() instead of using if statements. Resolving this will
299 // also allow deduplicating the Resize() calls.
300 // This specialization is difficult because you cannot partially
301 // specialize a templated class method (online things seem to suggest e.g.
302 // using a struct as the template parameter rather than having separate
303 // parameters).
304 return reinterpret_cast<T &>(GetInlineElement(index));
305 } else {
306 return objects_[index].t;
307 }
308 }
309
310 const T &operator[](size_t index) const { return at(index); }
311 T &operator[](size_t index) { return at(index); }
312
313 // Resizes the vector to the requested size.
314 // size must be less than or equal to the current capacity() of the vector.
315 // Does not allocate additional memory (call reserve() to allocate additional
316 // memory).
317 // Zero-initializes all inline element; initializes all subtable/string
318 // elements to extant but empty objects.
319 void resize(size_t size);
320
321 // Resizes an inline vector to the requested size.
322 // When changing the size of the vector, the removed/inserted elements will be
323 // set to zero if requested. Otherwise, they will be left uninitialized.
324 void resize_inline(size_t size, SetZero set_zero) {
325 CHECK_LE(size, allocated_length_);
326 static_assert(
327 kInline,
328 "Vector::resize_inline() only works for inline vector types (scalars, "
329 "enums, structs).");
330 if (size == length_) {
331 return;
332 }
333 if (set_zero == SetZero::kYes) {
334 memset(
335 reinterpret_cast<void *>(inline_data() + std::min(size, length_)), 0,
336 std::abs(static_cast<ssize_t>(length_) - static_cast<ssize_t>(size)) *
337 sizeof(InlineType));
338 }
339 length_ = size;
340 SetLength(length_);
341 }
342 // Resizes a vector of offsets to the requested size.
343 // If the size is increased, the new elements will be initialized
344 // to empty but extant objects for non-inlined types (so, zero-length
345 // vectors/strings; objects that exist but have no fields populated).
346 // Note that this is always equivalent to resize().
347 void resize_not_inline(size_t size) {
348 CHECK_LE(size, allocated_length_);
349 static_assert(!kInline,
350 "Vector::resize_not_inline() only works for offset vector "
351 "types (objects, strings).");
352 if (size == length_) {
353 return;
354 } else if (length_ > size) {
355 // TODO: Remove any excess allocated memory.
356 length_ = size;
357 SetLength(length_);
358 return;
359 } else {
360 while (length_ < size) {
361 CHECK_NOTNULL(emplace_back());
362 }
363 }
364 }
365
366 // Accessors directly to the inline data of a vector.
367 const T *data() const {
368 static_assert(kInline,
369 "If you have a use-case for directly accessing the "
370 "flatbuffer data pointer for vectors of "
371 "objects/strings, please start a discussion.");
372 return inline_data();
373 }
374
375 T *data() {
376 static_assert(kInline,
377 "If you have a use-case for directly accessing the "
378 "flatbuffer data pointer for vectors of "
379 "objects/strings, please start a discussion.");
380 return inline_data();
381 }
382
383 std::string SerializationDebugString() const {
384 std::stringstream str;
385 str << "Raw Size: " << kSize << " alignment: " << kAlign
386 << " allocated length: " << allocated_length_ << " inline alignment "
387 << kInlineAlign << " kPadding1 " << kPadding1 << "\n";
388 str << "Observed length " << GetLength() << " (expected " << length_
389 << ")\n";
390 str << "Inline Size " << kInlineSize << " Inline bytes/value:\n";
391 // TODO(james): Get pretty-printing for structs so we can provide better
392 // debug.
393 internal::DebugBytes(
394 internal::GetSubSpan(vector_buffer(), kLengthSize,
395 sizeof(InlineType) * allocated_length_),
396 str);
397 str << "kPadding2 " << kPadding2 << " offset data size "
398 << kOffsetOffsetDataSize << "\n";
399 return str.str();
400 }
401
402 protected:
403 friend struct internal::TableMover<
404 Vector<T, kStaticLength, kInline, kForceAlign, kNullTerminate>>;
405 // protected so that the String class can access the move constructor.
406 Vector(Vector &&) = default;
407
408 private:
409 // See kAlign and kOffset.
410 size_t Alignment() const final { return kAlign; }
411 size_t AbsoluteOffsetOffset() const override { return kOffset; }
412 // Returns a buffer that starts at the start of the vector itself (past any
413 // padding).
414 std::span<uint8_t> vector_buffer() {
415 return internal::GetSubSpan(buffer(), kPadding1);
416 }
417 std::span<const uint8_t> vector_buffer() const {
418 return internal::GetSubSpan(buffer(), kPadding1);
419 }
420
421 bool AddInlineElement(InlineType e) {
422 if (length_ == allocated_length_) {
423 return false;
424 }
425 SetInlineElement(length_, e);
426 ++length_;
427 SetLength(length_);
428 return true;
429 }
430
431 void SetInlineElement(size_t index, InlineType value) {
432 CHECK_LT(index, allocated_length_);
433 inline_data()[index] = value;
434 }
435
436 InlineType &GetInlineElement(size_t index) {
437 CHECK_LT(index, allocated_length_);
438 return inline_data()[index];
439 }
440
441 const InlineType &GetInlineElement(size_t index) const {
442 CHECK_LT(index, allocated_length_);
443 return inline_data()[index];
444 }
445
446 // Returns a pointer to the start of the inline data itself.
447 InlineType *inline_data() {
448 return reinterpret_cast<InlineType *>(vector_buffer().data() + kLengthSize);
449 }
450 const InlineType *inline_data() const {
451 return reinterpret_cast<const InlineType *>(vector_buffer().data() +
452 kLengthSize);
453 }
454
455 // Updates the length of the vector to match the provided length. Does not set
456 // the length_ member.
457 void SetLength(LengthType length) {
458 *reinterpret_cast<LengthType *>(vector_buffer().data()) = length;
459 if (kNullTerminate) {
460 memset(reinterpret_cast<void *>(inline_data() + length), 0,
461 sizeof(InlineType));
462 }
463 }
464 LengthType GetLength() const {
465 return *reinterpret_cast<const LengthType *>(vector_buffer().data());
466 }
467
468 // Overrides to allow ResizeableObject to manage memory adjustments.
469 size_t NumberOfSubObjects() const final {
470 return kInline ? 0 : allocated_length_;
471 }
472 using ResizeableObject::SubObject;
473 SubObject GetSubObject(size_t index) final {
474 return SubObject{
475 reinterpret_cast<uoffset_t *>(&GetInlineElement(index)),
476 // In order to let this compile regardless of whether type T is an
477 // object type or not, we just use a reinterpret_cast.
478 (index < length_)
479 ? reinterpret_cast<ResizeableObject *>(&objects_[index].t)
480 : nullptr,
481 &object_absolute_offsets_[index]};
482 }
483 // Implementation that handles copying from a flatbuffers::Vector of an inline
484 // data type.
485 [[nodiscard]] bool FromInlineFlatbuffer(ConstFlatbuffer *vector) {
486 if (!reserve(CHECK_NOTNULL(vector)->size())) {
487 return false;
488 }
489
490 // We will be overwriting the whole vector very shortly; there is no need to
491 // clear the buffer to zero.
492 resize_inline(vector->size(), SetZero::kNo);
493
494 memcpy(inline_data(), vector->Data(), size() * sizeof(InlineType));
495 return true;
496 }
497
498 // Implementation that handles copying from a flatbuffers::Vector of a
499 // not-inline data type.
500 [[nodiscard]] bool FromNotInlineFlatbuffer(const Flatbuffer *vector) {
501 if (!reserve(vector->size())) {
502 return false;
503 }
504 // "Clear" the vector.
505 resize_not_inline(0);
506
507 for (const typename T::Flatbuffer *entry : *vector) {
508 if (!CHECK_NOTNULL(emplace_back())->FromFlatbuffer(entry)) {
509 return false;
510 }
511 }
512 return true;
513 }
514
515 // In order to allow for easy partial template specialization, we use a
516 // non-member class to call FromInline/FromNotInlineFlatbuffer and
517 // resize_inline/resize_not_inline. There are not actually any great ways to
518 // do this with just our own class member functions, so instead we make these
519 // methods members of a friend of the Vector class; we then partially
520 // specialize the entire InlineWrapper class and use it to isolate anything
521 // that needs to have a common user interface while still having separate
522 // actual logic.
523 template <typename T_, bool kInline_, class Enable_>
524 friend struct internal::InlineWrapper;
525
526 // Note: The objects here really want to be owned by this object (as opposed
527 // to e.g. returning a stack-allocated object from the emplace_back() methods
528 // that the user then owns). There are two main challenges with have the user
529 // own the object on question:
530 // 1. We can't have >1 reference floating around, or else one object's state
531 // can become out of date. This forces us to do ref-counting and could
532 // make certain types of code obnoxious to write.
533 // 2. Once the user-created object goes out of scope, we lose all of its
534 // internal state. In _theory_ it should be possible to reconstruct most
535 // of the relevant state by examining the contents of the buffer, but
536 // doing so would be cumbersome.
537 aos::InlinedVector<internal::TableMover<ObjectType>,
538 kInline ? 0 : kStaticLength>
539 objects_;
540 aos::InlinedVector<size_t, kInline ? 0 : kStaticLength>
541 object_absolute_offsets_;
542 // Current actual length of the vector.
543 size_t length_ = 0;
544 // Current length that we have allocated space available for.
545 size_t allocated_length_ = kStaticLength;
546};
547
548template <typename T, size_t kStaticLength, bool kInline, size_t kForceAlign,
549 bool kNullTerminate>
550T *Vector<T, kStaticLength, kInline, kForceAlign,
551 kNullTerminate>::emplace_back() {
552 static_assert(!kInline);
553 if (length_ >= allocated_length_) {
554 return nullptr;
555 }
556 const size_t object_start = object_absolute_offsets_[length_];
557 std::span<uint8_t> object_buffer =
558 internal::GetSubSpan(buffer(), object_start, T::kSize);
559 objects_.emplace_back(object_buffer, this);
560 const uoffset_t offset =
561 object_start - (reinterpret_cast<size_t>(&GetInlineElement(length_)) -
562 reinterpret_cast<size_t>(buffer().data()));
563 CHECK(AddInlineElement(offset));
564 return &objects_[objects_.size() - 1].t;
565}
566
567// The String class is a special version of the Vector that is always
568// null-terminated, always contains 1-byte character elements, and which has a
569// few extra methods for convenient string access.
570template <size_t kStaticLength>
571class String : public Vector<char, kStaticLength, true, 0, true> {
572 public:
573 typedef Vector<char, kStaticLength, true, 0, true> VectorType;
574 typedef flatbuffers::String Flatbuffer;
575 String(std::span<uint8_t> buffer, ResizeableObject *parent)
576 : VectorType(buffer, parent) {}
577 virtual ~String() {}
578 void SetString(std::string_view string) {
579 CHECK_LT(string.size(), VectorType::capacity());
580 VectorType::resize_inline(string.size(), SetZero::kNo);
581 memcpy(VectorType::data(), string.data(), string.size());
582 }
583 std::string_view string_view() const {
584 return std::string_view(VectorType::data(), VectorType::size());
585 }
586 std::string str() const {
587 return std::string(VectorType::data(), VectorType::size());
588 }
589 const char *c_str() const { return VectorType::data(); }
590
591 private:
592 friend struct internal::TableMover<String<kStaticLength>>;
593 String(String &&) = default;
594};
595
596namespace internal {
597// Specialization for all non-inline vector types. All of these types will just
598// use offsets for their inline data and have appropriate member types/constants
599// for the remaining fields.
600template <typename T>
601struct InlineWrapper<T, false, void> {
602 typedef uoffset_t Type;
603 typedef T ObjectType;
604 typedef flatbuffers::Offset<typename T::Flatbuffer> FlatbufferType;
605 typedef flatbuffers::Offset<typename T::Flatbuffer> ConstFlatbufferType;
606 static_assert((T::kSize % T::kAlign) == 0);
607 static constexpr size_t kDataAlign = T::kAlign;
608 static constexpr size_t kDataSize = T::kSize;
609 template <typename StaticVector>
610 static bool FromFlatbuffer(
611 StaticVector *to, const typename StaticVector::ConstFlatbuffer *from) {
612 return to->FromNotInlineFlatbuffer(from);
613 }
614 template <typename StaticVector>
615 static void ResizeVector(StaticVector *target, size_t size) {
616 target->resize_not_inline(size);
617 }
618};
619// Specialization for "normal" scalar inline data (ints, floats, doubles,
620// enums).
621template <typename T>
622struct InlineWrapper<T, true,
623 typename std::enable_if_t<!std::is_class<T>::value>> {
624 typedef T Type;
625 typedef T ObjectType;
626 typedef T FlatbufferType;
627 typedef T ConstFlatbufferType;
628 static constexpr size_t kDataAlign = alignof(T);
629 static constexpr size_t kDataSize = sizeof(T);
630 template <typename StaticVector>
631 static bool FromFlatbuffer(
632 StaticVector *to, const typename StaticVector::ConstFlatbuffer *from) {
633 return to->FromInlineFlatbuffer(from);
634 }
635 template <typename StaticVector>
636 static void ResizeVector(StaticVector *target, size_t size) {
637 target->resize_inline(size, SetZero::kYes);
638 }
639};
640// Specialization for booleans, given that flatbuffers uses uint8_t's for bools.
641template <>
642struct InlineWrapper<bool, true, void> {
643 typedef uint8_t Type;
644 typedef uint8_t ObjectType;
645 typedef uint8_t FlatbufferType;
646 typedef uint8_t ConstFlatbufferType;
647 static constexpr size_t kDataAlign = 1u;
648 static constexpr size_t kDataSize = 1u;
649 template <typename StaticVector>
650 static bool FromFlatbuffer(
651 StaticVector *to, const typename StaticVector::ConstFlatbuffer *from) {
652 return to->FromInlineFlatbuffer(from);
653 }
654 template <typename StaticVector>
655 static void ResizeVector(StaticVector *target, size_t size) {
656 target->resize_inline(size, SetZero::kYes);
657 }
658};
659// Specialization for flatbuffer structs.
660// The flatbuffers codegen uses struct pointers rather than references or the
661// such, so it needs to be treated special.
662template <typename T>
663struct InlineWrapper<T, true,
664 typename std::enable_if_t<std::is_class<T>::value>> {
665 typedef T Type;
666 typedef T ObjectType;
667 typedef T *FlatbufferType;
668 typedef const T *ConstFlatbufferType;
669 static constexpr size_t kDataAlign = alignof(T);
670 static constexpr size_t kDataSize = sizeof(T);
671 template <typename StaticVector>
672 static bool FromFlatbuffer(
673 StaticVector *to, const typename StaticVector::ConstFlatbuffer *from) {
674 return to->FromInlineFlatbuffer(from);
675 }
676 template <typename StaticVector>
677 static void ResizeVector(StaticVector *target, size_t size) {
678 target->resize_inline(size, SetZero::kYes);
679 }
680};
681} // namespace internal
682 //
683template <typename T, size_t kStaticLength, bool kInline, size_t kForceAlign,
684 bool kNullTerminate>
685bool Vector<T, kStaticLength, kInline, kForceAlign,
686 kNullTerminate>::FromFlatbuffer(ConstFlatbuffer *vector) {
687 return internal::InlineWrapper<T, kInline>::FromFlatbuffer(this, vector);
688}
689
690template <typename T, size_t kStaticLength, bool kInline, size_t kForceAlign,
691 bool kNullTerminate>
692void Vector<T, kStaticLength, kInline, kForceAlign, kNullTerminate>::resize(
693 size_t size) {
694 internal::InlineWrapper<T, kInline>::ResizeVector(this, size);
695}
696
697} // namespace aos::fbs
698#endif // AOS_FLATBUFFERS_STATIC_VECTOR_H_