Austin Schuh | 25356e2 | 2019-09-11 19:27:07 -0700 | [diff] [blame] | 1 | #ifndef AOS_IPC_LIB_INDEX_H_ |
| 2 | #define AOS_IPC_LIB_INDEX_H_ |
| 3 | |
| 4 | #include <sys/types.h> |
| 5 | #include <atomic> |
| 6 | |
| 7 | namespace aos { |
| 8 | namespace ipc_lib { |
| 9 | |
| 10 | struct AtomicQueueIndex; |
| 11 | class AtomicIndex; |
| 12 | class Index; |
| 13 | |
| 14 | namespace testing { |
| 15 | class QueueIndexTest; |
| 16 | } // namespace testing |
| 17 | |
| 18 | // There are 2 types of indices in the queue. 1 is the index into the overall |
| 19 | // queue. If we have sent 1,000,005 messages, this is that number. |
| 20 | // |
| 21 | // The other is the index into the message list. This is essentially a message |
| 22 | // pointer. It has some of the lower bits of the queue index encoded into it as |
| 23 | // a safeguard to detect if someone re-used a message out from under us and we |
| 24 | // couldn't tell otherwise. It is used to map a queue index to a message index. |
| 25 | // |
| 26 | // Each of these index types has an atomic version and a non-atomic. The atomic |
| 27 | // version is a wrapper around a uint32_t to hang helper functions off of. |
| 28 | // The non-atomic version contains all the logic. These are all in the header |
| 29 | // file to encourage the compiler to inline aggressively. |
| 30 | // |
| 31 | // The user should very infrequently be manipulating the values of these |
| 32 | // directly. Use the classes instead to do the heavy lifting. |
| 33 | |
| 34 | // Structure for holding the index into the queue. |
| 35 | class QueueIndex { |
| 36 | public: |
| 37 | // Returns an invalid queue element which uses a reserved value. |
| 38 | static QueueIndex Invalid() { return QueueIndex(0xffffffff, 0); } |
| 39 | // Returns a queue element pointing to 0. |
| 40 | static QueueIndex Zero(uint32_t count) { return QueueIndex(0, count); } |
| 41 | |
| 42 | // Returns true if the index is valid. |
| 43 | bool valid() const { return index_ != 0xffffffff; } |
| 44 | |
| 45 | // Returns the modulo base used to wrap to avoid overlapping with the reserved |
| 46 | // number. |
| 47 | // max_value is one more than the max value we can store. |
| 48 | // count is the the number of elements in the queue. |
| 49 | static constexpr uint32_t MaxIndex(uint32_t max_value, uint32_t count) { |
| 50 | return (max_value / count) * count; |
| 51 | } |
| 52 | |
| 53 | // Gets the next index. |
| 54 | QueueIndex Increment() const { |
| 55 | return IncrementBy(1u); |
| 56 | } |
| 57 | |
| 58 | // Gets the nth next element. |
| 59 | QueueIndex IncrementBy(uint32_t amount) const { |
| 60 | uint32_t index = index_ + amount; |
| 61 | uint32_t max_index = MaxIndex(sentinal_value(), count_); |
| 62 | |
| 63 | if (index < index_) { |
| 64 | // We wrapped. We are shifting up by 0x100000000 - MaxIndex(...). |
| 65 | // Which is equivalent to subtracting MaxIndex since everything is modular |
| 66 | // with a uint32_t. |
| 67 | index -= max_index; |
| 68 | } |
| 69 | |
| 70 | // Now, wrap the remainder. |
| 71 | index = index % max_index; |
| 72 | return QueueIndex(index, count_); |
| 73 | } |
| 74 | |
| 75 | // Gets the nth previous element. |
| 76 | QueueIndex DecrementBy(uint32_t amount) const { |
| 77 | uint32_t index = index_ - amount; |
| 78 | if (index > index_) { |
| 79 | // We wrapped. We are shifting down by 0x100000000 - MaxIndex(...). |
| 80 | // Which is equivalent to adding MaxIndex since everything is modular with |
| 81 | // a uint32_t. |
| 82 | index += MaxIndex(sentinal_value(), count_); |
| 83 | } |
| 84 | return QueueIndex(index, count_); |
| 85 | } |
| 86 | |
| 87 | // Returns true if the lowest 16 bits of the queue index from the Index could |
| 88 | // plausibly match this queue index. |
| 89 | bool IsPlausible(uint16_t queue_index) const { |
| 90 | return valid() && (queue_index == static_cast<uint16_t>(index_ & 0xffff)); |
| 91 | } |
| 92 | |
| 93 | bool operator==(const QueueIndex other) const { |
| 94 | return other.index_ == index_; |
| 95 | } |
| 96 | |
| 97 | bool operator!=(const QueueIndex other) const { |
| 98 | return other.index_ != index_; |
| 99 | } |
| 100 | |
| 101 | // Returns the wrapped index into the queue. |
| 102 | uint32_t Wrapped() const { return index_ % count_; } |
| 103 | |
| 104 | // Returns the raw index. This should be used very sparingly. |
| 105 | uint32_t index() const { return index_; } |
| 106 | |
| 107 | private: |
| 108 | QueueIndex(uint32_t index, uint32_t count) : index_(index), count_(count) {} |
| 109 | |
| 110 | static constexpr uint32_t sentinal_value() { return 0xffffffffu; } |
| 111 | |
| 112 | friend struct AtomicQueueIndex; |
| 113 | friend class Index; |
| 114 | // For testing. |
| 115 | friend class testing::QueueIndexTest; |
| 116 | |
| 117 | // Index and number of elements in the queue. |
| 118 | uint32_t index_; |
| 119 | // Count is stored here rather than passed in everywhere in the hopes that the |
| 120 | // compiler completely optimizes out this class and this variable if it isn't |
| 121 | // used. |
| 122 | uint32_t count_; |
| 123 | }; |
| 124 | |
| 125 | // Atomic storage for setting and getting QueueIndex objects. |
| 126 | // Count is the number of messages in the queue. |
| 127 | struct AtomicQueueIndex { |
| 128 | public: |
| 129 | // Atomically reads the index without any ordering constraints. |
| 130 | QueueIndex RelaxedLoad(uint32_t count) { |
| 131 | return QueueIndex(index_.load(::std::memory_order_relaxed), count); |
| 132 | } |
| 133 | |
| 134 | // Full bidirectional barriers here. |
| 135 | QueueIndex Load(uint32_t count) { return QueueIndex(index_.load(), count); } |
| 136 | inline void Store(QueueIndex value) { index_.store(value.index_); } |
| 137 | |
| 138 | // Invalidates the element unconditionally. |
| 139 | inline void Invalidate() { Store(QueueIndex::Invalid()); } |
| 140 | |
| 141 | // Swaps expected for index atomically. Returns true on success, false |
| 142 | // otherwise. |
| 143 | inline bool CompareAndExchangeStrong(QueueIndex expected, QueueIndex index) { |
| 144 | return index_.compare_exchange_strong(expected.index_, index.index_); |
| 145 | } |
| 146 | |
| 147 | private: |
| 148 | ::std::atomic<uint32_t> index_; |
| 149 | }; |
| 150 | |
| 151 | // Structure holding the queue index and the index into the message list. |
| 152 | class Index { |
| 153 | public: |
| 154 | // Constructs an Index. queue_index is the QueueIndex of this message, and |
| 155 | // message_index is the index into the messages structure. |
| 156 | Index(QueueIndex queue_index, uint16_t message_index) |
| 157 | : Index(queue_index.index_, message_index) {} |
| 158 | Index(uint32_t queue_index, uint16_t message_index) |
| 159 | : index_((queue_index & 0xffff) | |
| 160 | (static_cast<uint32_t>(message_index) << 16)) {} |
| 161 | |
| 162 | // Index of this message in the message array. |
| 163 | uint16_t message_index() const { return (index_ >> 16) & 0xffff; } |
| 164 | |
| 165 | // Lowest 16 bits of the queue index of this message in the queue. |
| 166 | uint16_t queue_index() const { return index_ & 0xffff; } |
| 167 | |
| 168 | // Returns true if the provided queue index plausibly represents this Index. |
| 169 | bool IsPlausible(QueueIndex queue_index) const { |
| 170 | return queue_index.IsPlausible(this->queue_index()); |
| 171 | } |
| 172 | |
| 173 | // Returns an invalid Index. |
| 174 | static Index Invalid() { return Index(sentinal_value()); } |
| 175 | // Checks if this Index is valid or not. |
| 176 | bool valid() const { return index_ != sentinal_value(); } |
| 177 | |
| 178 | // Returns the raw Index. This should only be used for debug. |
| 179 | uint32_t get() const { return index_; } |
| 180 | |
| 181 | // Returns the maximum number of messages we can store before overflowing. |
| 182 | static constexpr uint16_t MaxMessages() { return 0xfffe; } |
| 183 | |
| 184 | bool operator==(const Index other) const { return other.index_ == index_; } |
| 185 | |
| 186 | private: |
| 187 | Index(uint32_t index) |
| 188 | : index_(index) {} |
| 189 | |
| 190 | friend class AtomicIndex; |
| 191 | |
| 192 | static constexpr uint32_t sentinal_value() { return 0xffffffffu; } |
| 193 | |
| 194 | // Note: a value of 0xffffffff is a sentinal to represent an invalid entry. |
| 195 | // This works because we would need to have a queue index of 0x*ffff, *and* |
| 196 | // have 0xffff messages in the message list. That constraint is easy to |
| 197 | // enforce by limiting the max messages. |
| 198 | uint32_t index_; |
| 199 | }; |
| 200 | |
| 201 | // Atomic storage for setting and getting Index objects. |
| 202 | class AtomicIndex { |
| 203 | public: |
| 204 | // Stores and loads atomically without ordering constraints. |
| 205 | Index RelaxedLoad() { |
| 206 | return Index(index_.load(::std::memory_order_relaxed)); |
| 207 | } |
| 208 | void RelaxedStore(Index index) { |
| 209 | index_.store(index.index_, ::std::memory_order_relaxed); |
| 210 | } |
| 211 | |
| 212 | // Invalidates the index atomically, but without any ordering constraints. |
| 213 | void RelaxedInvalidate() { RelaxedStore(Index::Invalid()); } |
| 214 | |
| 215 | // Full bidirectional barriers here. |
| 216 | void Store(Index index) { index_.store(index.index_); } |
| 217 | Index Load() { return Index(index_.load()); } |
| 218 | |
| 219 | |
| 220 | // Swaps expected for index atomically. Returns true on success, false |
| 221 | // otherwise. |
| 222 | inline bool CompareAndExchangeStrong(Index expected, Index index) { |
| 223 | return index_.compare_exchange_strong(expected.index_, index.index_); |
| 224 | } |
| 225 | |
| 226 | private: |
| 227 | ::std::atomic<uint32_t> index_; |
| 228 | }; |
| 229 | |
| 230 | } // namespace ipc_lib |
| 231 | } // namespace aos |
| 232 | |
| 233 | #endif // AOS_IPC_LIB_INDEX_H_ |