blob: 190d1755add71bb92796892dc64fd0fc100c0b77 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31// This include must come before any #ifndef check on Ceres compile options.
32#include "ceres/internal/port.h"
33
34#ifndef CERES_NO_SUITESPARSE
35#include "ceres/suitesparse.h"
36
37#include <vector>
38
39#include "ceres/compressed_col_sparse_matrix_utils.h"
40#include "ceres/compressed_row_sparse_matrix.h"
41#include "ceres/linear_solver.h"
42#include "ceres/triplet_sparse_matrix.h"
43#include "cholmod.h"
44
45namespace ceres {
46namespace internal {
47
48using std::string;
49using std::vector;
50
51SuiteSparse::SuiteSparse() { cholmod_start(&cc_); }
52
53SuiteSparse::~SuiteSparse() { cholmod_finish(&cc_); }
54
55cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) {
56 cholmod_triplet triplet;
57
58 triplet.nrow = A->num_rows();
59 triplet.ncol = A->num_cols();
60 triplet.nzmax = A->max_num_nonzeros();
61 triplet.nnz = A->num_nonzeros();
62 triplet.i = reinterpret_cast<void*>(A->mutable_rows());
63 triplet.j = reinterpret_cast<void*>(A->mutable_cols());
64 triplet.x = reinterpret_cast<void*>(A->mutable_values());
65 triplet.stype = 0; // Matrix is not symmetric.
66 triplet.itype = CHOLMOD_INT;
67 triplet.xtype = CHOLMOD_REAL;
68 triplet.dtype = CHOLMOD_DOUBLE;
69
70 return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
71}
72
73cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose(
74 TripletSparseMatrix* A) {
75 cholmod_triplet triplet;
76
77 triplet.ncol = A->num_rows(); // swap row and columns
78 triplet.nrow = A->num_cols();
79 triplet.nzmax = A->max_num_nonzeros();
80 triplet.nnz = A->num_nonzeros();
81
82 // swap rows and columns
83 triplet.j = reinterpret_cast<void*>(A->mutable_rows());
84 triplet.i = reinterpret_cast<void*>(A->mutable_cols());
85 triplet.x = reinterpret_cast<void*>(A->mutable_values());
86 triplet.stype = 0; // Matrix is not symmetric.
87 triplet.itype = CHOLMOD_INT;
88 triplet.xtype = CHOLMOD_REAL;
89 triplet.dtype = CHOLMOD_DOUBLE;
90
91 return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
92}
93
94cholmod_sparse SuiteSparse::CreateSparseMatrixTransposeView(
95 CompressedRowSparseMatrix* A) {
96 cholmod_sparse m;
97 m.nrow = A->num_cols();
98 m.ncol = A->num_rows();
99 m.nzmax = A->num_nonzeros();
100 m.nz = nullptr;
101 m.p = reinterpret_cast<void*>(A->mutable_rows());
102 m.i = reinterpret_cast<void*>(A->mutable_cols());
103 m.x = reinterpret_cast<void*>(A->mutable_values());
104 m.z = nullptr;
105
106 if (A->storage_type() == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
107 m.stype = 1;
108 } else if (A->storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
109 m.stype = -1;
110 } else {
111 m.stype = 0;
112 }
113
114 m.itype = CHOLMOD_INT;
115 m.xtype = CHOLMOD_REAL;
116 m.dtype = CHOLMOD_DOUBLE;
117 m.sorted = 1;
118 m.packed = 1;
119
120 return m;
121}
122
123cholmod_dense SuiteSparse::CreateDenseVectorView(const double* x, int size) {
124 cholmod_dense v;
125 v.nrow = size;
126 v.ncol = 1;
127 v.nzmax = size;
128 v.d = size;
129 v.x = const_cast<void*>(reinterpret_cast<const void*>(x));
130 v.xtype = CHOLMOD_REAL;
131 v.dtype = CHOLMOD_DOUBLE;
132 return v;
133}
134
135cholmod_dense* SuiteSparse::CreateDenseVector(const double* x,
136 int in_size,
137 int out_size) {
138 CHECK_LE(in_size, out_size);
139 cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_);
140 if (x != nullptr) {
141 memcpy(v->x, x, in_size * sizeof(*x));
142 }
143 return v;
144}
145
146cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A,
147 string* message) {
148 // Cholmod can try multiple re-ordering strategies to find a fill
149 // reducing ordering. Here we just tell it use AMD with automatic
150 // matrix dependence choice of supernodal versus simplicial
151 // factorization.
152 cc_.nmethods = 1;
153 cc_.method[0].ordering = CHOLMOD_AMD;
154 cc_.supernodal = CHOLMOD_AUTO;
155
156 cholmod_factor* factor = cholmod_analyze(A, &cc_);
157 if (VLOG_IS_ON(2)) {
158 cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
159 }
160
161 if (cc_.status != CHOLMOD_OK) {
162 *message =
163 StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
164 return nullptr;
165 }
166
167 CHECK(factor != nullptr);
168 return factor;
169}
170
171cholmod_factor* SuiteSparse::BlockAnalyzeCholesky(cholmod_sparse* A,
172 const vector<int>& row_blocks,
173 const vector<int>& col_blocks,
174 string* message) {
175 vector<int> ordering;
176 if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) {
177 return nullptr;
178 }
179 return AnalyzeCholeskyWithUserOrdering(A, ordering, message);
180}
181
182cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(
183 cholmod_sparse* A, const vector<int>& ordering, string* message) {
184 CHECK_EQ(ordering.size(), A->nrow);
185
186 cc_.nmethods = 1;
187 cc_.method[0].ordering = CHOLMOD_GIVEN;
188
189 cholmod_factor* factor =
190 cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), nullptr, 0, &cc_);
191 if (VLOG_IS_ON(2)) {
192 cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
193 }
194 if (cc_.status != CHOLMOD_OK) {
195 *message =
196 StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
197 return nullptr;
198 }
199
200 CHECK(factor != nullptr);
201 return factor;
202}
203
204cholmod_factor* SuiteSparse::AnalyzeCholeskyWithNaturalOrdering(
205 cholmod_sparse* A, string* message) {
206 cc_.nmethods = 1;
207 cc_.method[0].ordering = CHOLMOD_NATURAL;
208 cc_.postorder = 0;
209
210 cholmod_factor* factor = cholmod_analyze(A, &cc_);
211 if (VLOG_IS_ON(2)) {
212 cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
213 }
214 if (cc_.status != CHOLMOD_OK) {
215 *message =
216 StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
217 return nullptr;
218 }
219
220 CHECK(factor != nullptr);
221 return factor;
222}
223
224bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A,
225 const vector<int>& row_blocks,
226 const vector<int>& col_blocks,
227 vector<int>* ordering) {
228 const int num_row_blocks = row_blocks.size();
229 const int num_col_blocks = col_blocks.size();
230
231 // Arrays storing the compressed column structure of the matrix
232 // incoding the block sparsity of A.
233 vector<int> block_cols;
234 vector<int> block_rows;
235
236 CompressedColumnScalarMatrixToBlockMatrix(reinterpret_cast<const int*>(A->i),
237 reinterpret_cast<const int*>(A->p),
238 row_blocks,
239 col_blocks,
240 &block_rows,
241 &block_cols);
242 cholmod_sparse_struct block_matrix;
243 block_matrix.nrow = num_row_blocks;
244 block_matrix.ncol = num_col_blocks;
245 block_matrix.nzmax = block_rows.size();
246 block_matrix.p = reinterpret_cast<void*>(&block_cols[0]);
247 block_matrix.i = reinterpret_cast<void*>(&block_rows[0]);
248 block_matrix.x = nullptr;
249 block_matrix.stype = A->stype;
250 block_matrix.itype = CHOLMOD_INT;
251 block_matrix.xtype = CHOLMOD_PATTERN;
252 block_matrix.dtype = CHOLMOD_DOUBLE;
253 block_matrix.sorted = 1;
254 block_matrix.packed = 1;
255
256 vector<int> block_ordering(num_row_blocks);
257 if (!cholmod_amd(&block_matrix, nullptr, 0, &block_ordering[0], &cc_)) {
258 return false;
259 }
260
261 BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering);
262 return true;
263}
264
265LinearSolverTerminationType SuiteSparse::Cholesky(cholmod_sparse* A,
266 cholmod_factor* L,
267 string* message) {
268 CHECK(A != nullptr);
269 CHECK(L != nullptr);
270
271 // Save the current print level and silence CHOLMOD, otherwise
272 // CHOLMOD is prone to dumping stuff to stderr, which can be
273 // distracting when the error (matrix is indefinite) is not a fatal
274 // failure.
275 const int old_print_level = cc_.print;
276 cc_.print = 0;
277
278 cc_.quick_return_if_not_posdef = 1;
279 int cholmod_status = cholmod_factorize(A, L, &cc_);
280 cc_.print = old_print_level;
281
282 switch (cc_.status) {
283 case CHOLMOD_NOT_INSTALLED:
284 *message = "CHOLMOD failure: Method not installed.";
285 return LINEAR_SOLVER_FATAL_ERROR;
286 case CHOLMOD_OUT_OF_MEMORY:
287 *message = "CHOLMOD failure: Out of memory.";
288 return LINEAR_SOLVER_FATAL_ERROR;
289 case CHOLMOD_TOO_LARGE:
290 *message = "CHOLMOD failure: Integer overflow occurred.";
291 return LINEAR_SOLVER_FATAL_ERROR;
292 case CHOLMOD_INVALID:
293 *message = "CHOLMOD failure: Invalid input.";
294 return LINEAR_SOLVER_FATAL_ERROR;
295 case CHOLMOD_NOT_POSDEF:
296 *message = "CHOLMOD warning: Matrix not positive definite.";
297 return LINEAR_SOLVER_FAILURE;
298 case CHOLMOD_DSMALL:
299 *message =
300 "CHOLMOD warning: D for LDL' or diag(L) or "
301 "LL' has tiny absolute value.";
302 return LINEAR_SOLVER_FAILURE;
303 case CHOLMOD_OK:
304 if (cholmod_status != 0) {
305 return LINEAR_SOLVER_SUCCESS;
306 }
307
308 *message =
309 "CHOLMOD failure: cholmod_factorize returned false "
310 "but cholmod_common::status is CHOLMOD_OK."
311 "Please report this to ceres-solver@googlegroups.com.";
312 return LINEAR_SOLVER_FATAL_ERROR;
313 default:
314 *message = StringPrintf(
315 "Unknown cholmod return code: %d. "
316 "Please report this to ceres-solver@googlegroups.com.",
317 cc_.status);
318 return LINEAR_SOLVER_FATAL_ERROR;
319 }
320
321 return LINEAR_SOLVER_FATAL_ERROR;
322}
323
324cholmod_dense* SuiteSparse::Solve(cholmod_factor* L,
325 cholmod_dense* b,
326 string* message) {
327 if (cc_.status != CHOLMOD_OK) {
328 *message = "cholmod_solve failed. CHOLMOD status is not CHOLMOD_OK";
329 return nullptr;
330 }
331
332 return cholmod_solve(CHOLMOD_A, L, b, &cc_);
333}
334
335bool SuiteSparse::ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
336 int* ordering) {
337 return cholmod_amd(matrix, nullptr, 0, ordering, &cc_);
338}
339
340bool SuiteSparse::ConstrainedApproximateMinimumDegreeOrdering(
341 cholmod_sparse* matrix, int* constraints, int* ordering) {
342#ifndef CERES_NO_CAMD
343 return cholmod_camd(matrix, nullptr, 0, constraints, ordering, &cc_);
344#else
345 LOG(FATAL) << "Congratulations you have found a bug in Ceres."
346 << "Ceres Solver was compiled with SuiteSparse "
347 << "version 4.1.0 or less. Calling this function "
348 << "in that case is a bug. Please contact the"
349 << "the Ceres Solver developers.";
350 return false;
351#endif
352}
353
354std::unique_ptr<SparseCholesky> SuiteSparseCholesky::Create(
355 const OrderingType ordering_type) {
356 return std::unique_ptr<SparseCholesky>(new SuiteSparseCholesky(ordering_type));
357}
358
359SuiteSparseCholesky::SuiteSparseCholesky(const OrderingType ordering_type)
360 : ordering_type_(ordering_type), factor_(nullptr) {}
361
362SuiteSparseCholesky::~SuiteSparseCholesky() {
363 if (factor_ != nullptr) {
364 ss_.Free(factor_);
365 }
366}
367
368LinearSolverTerminationType SuiteSparseCholesky::Factorize(
369 CompressedRowSparseMatrix* lhs, string* message) {
370 if (lhs == nullptr) {
371 *message = "Failure: Input lhs is NULL.";
372 return LINEAR_SOLVER_FATAL_ERROR;
373 }
374
375 cholmod_sparse cholmod_lhs = ss_.CreateSparseMatrixTransposeView(lhs);
376
377 if (factor_ == nullptr) {
378 if (ordering_type_ == NATURAL) {
379 factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&cholmod_lhs, message);
380 } else {
381 if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) {
382 factor_ = ss_.BlockAnalyzeCholesky(
383 &cholmod_lhs, lhs->col_blocks(), lhs->row_blocks(), message);
384 } else {
385 factor_ = ss_.AnalyzeCholesky(&cholmod_lhs, message);
386 }
387 }
388
389 if (factor_ == nullptr) {
390 return LINEAR_SOLVER_FATAL_ERROR;
391 }
392 }
393
394 return ss_.Cholesky(&cholmod_lhs, factor_, message);
395}
396
397CompressedRowSparseMatrix::StorageType SuiteSparseCholesky::StorageType()
398 const {
399 return ((ordering_type_ == NATURAL)
400 ? CompressedRowSparseMatrix::UPPER_TRIANGULAR
401 : CompressedRowSparseMatrix::LOWER_TRIANGULAR);
402}
403
404LinearSolverTerminationType SuiteSparseCholesky::Solve(const double* rhs,
405 double* solution,
406 string* message) {
407 // Error checking
408 if (factor_ == nullptr) {
409 *message = "Solve called without a call to Factorize first.";
410 return LINEAR_SOLVER_FATAL_ERROR;
411 }
412
413 const int num_cols = factor_->n;
414 cholmod_dense cholmod_rhs = ss_.CreateDenseVectorView(rhs, num_cols);
415 cholmod_dense* cholmod_dense_solution =
416 ss_.Solve(factor_, &cholmod_rhs, message);
417
418 if (cholmod_dense_solution == nullptr) {
419 return LINEAR_SOLVER_FAILURE;
420 }
421
422 memcpy(solution, cholmod_dense_solution->x, num_cols * sizeof(*solution));
423 ss_.Free(cholmod_dense_solution);
424 return LINEAR_SOLVER_SUCCESS;
425}
426
427} // namespace internal
428} // namespace ceres
429
430#endif // CERES_NO_SUITESPARSE